Board logo

标题: 【讨论帖】疫苗研发的新思路 [打印本页]

作者: TNT    时间: 2014-8-5 18:19     标题: 【讨论帖】疫苗研发的新思路


相关疾病:
传染病
最近在动物科学版块里,
提出了与此类似的一个问题,
现在免疫学版再次提出,
希望能与免疫学的各位(高手)共同讨论,达到共同学习进步之目的.
目前疫苗研究有那些方法,
以及目前可以用于疫苗研究的有哪些新的思路?
因为,本人相信,目前来说,
疫苗仍然是控制疾病,
尤其是传染性疾病,
最重要的手段之一.
但,似乎目前的疫苗研究并不想人们想象的那样容易.
请各位战友来聊聊自己的看法,和一些突发其想的主意,
说不定,你的想法就是一个崭新的思路.
如下具体问题是我关心的:
1.经典的免疫学理论指导目前的疫苗开发是不是仍然有效?是不是需要发展新的理论?
2.目前成熟的疫苗似乎大多数是全病原体疫苗, 部分病原体(能诱导产生有效免疫反应的部分)制疫苗的缺点是什么?
3.短时间大量生产疫苗的瓶颈问题是什么? 有什么方法或例子可以借鉴?

作者: eric930    时间: 2014-8-5 18:19


相关疾病:
癌症自身免疫性疾病传染病
谢谢楼主提出的很好的话题:
个人谈几点看法:
1,免疫和疫苗:牛痘接种的成功,琴纳叩开现代免疫学大门.疫苗和免疫之关系,个人来说:首先,疫苗研究丰富了免疫学理论的内容,推前一点,牛痘接种(当然当时他它还没有疫苗这个名字)的成功,促使科学家去挖掘这其中潜在的奥秘,慢慢地他们找到了证明它至所以成功的理由,"免疫"一词也由此诞生.免疫学也开始了它飞速发展的历程,今天来言,疫苗研究中的种种现象在进一步阐明我们经典免疫学的原理同时也极大丰富了经典免疫学的知识(登革热和蓝耳病的C-ADE,DNA疫苗的交叉提呈等等)另外也对经典免疫学产生了很多挑战.这些无疑对促进免疫学的发展起到了极大的作用,其次:免疫学理论更为疫苗的研制提供了理论基础.从免疫学的角度来说,一种有效的疫苗应该能够激发机体广泛的免疫应答,体液免疫和细胞免疫,全身免疫和黏膜免疫,这一点也一直是我们疫苗研究者努力的方向(当然个人觉得在细胞和体液免疫两手都要抓的情况下,还必须要有一个偏向的问题,Th1 or Th2 or Treg?,或许只能看是什么病原体或者什么疾病了,呵呵).特别值得一提的是随着免疫学的发展和人们在疾病压力下的努力,一些新兴疫苗开始出现,疫苗的责任也不只在防病,已经开始延伸到治病,甚至防治兼具的效果,一些针对慢性感染,恶性肿瘤,自身免疫性疾病的治疗性疫苗.已经进入临床实验阶段.疫苗强大功能的理论来源永远源自丰富的免疫知识
2,虽然各种新型疫苗(多肽疫苗,载体疫苗,DNA疫苗等)在理论研究或者实验室水平上都显示出了很好的效用,但是有一点可以看出目前应用中的疫苗还是主要停留在一代疫苗和二代疫苗,可以说明两个问题:其一,新型疫苗的应用还存在瓶颈(比如多肽疫苗的低免疫原性和规模化生产问题,载体疫苗的抗载体免疫,以及DNA疫苗在人体内的低表达和安全性问题等等)这些问题则需要在长期的跟踪检测中才会慢慢发现并慢慢得以解决.其二,相对与以前来说,在"以人为本"社会理念下,安全性问题显的比以前更为重要,疫苗的审批把关严度也接近苛刻.当然这也是件好事了,但是从某种程度上还是限制了疫苗的设计和研发.其三,与传染病的抗争是人类生存的一个永恒主题,在人类免疫系统尤其是在各种疫苗激发的进入全面备战状态的免疫系统的选择压力下,各种病原体更是获得了各种迷惑机体免疫系统的面具,这也进一步加大的疫苗研究的步伐,尽管各种所谓的广谱或者超级疫苗也时时涌现,个人觉得任何广谱或者超级疫苗的作用都只是暂时的.疫苗开发之路还很远.
3,疫苗的短、平、快生产和规模化问题:诚然各种先进设备的引进给疫苗的规模化和产业化带来了很多便利,但是当前疫苗的规模化生产问题确实是很多疫苗(重组疫苗,病毒类疫苗等)的一大阻碍,比较突出的则是动物细胞(杂交瘤细胞、CHO细胞、昆虫细胞等)大规模培养技术.近年各种生物反应器的应用为细胞的大规模培养提供了很好的平台,但是其中的各种反应条件和技术工艺很需要我们去进一步摸索改进并优化.
只是个人一家之见,希望更多的朋友加入讨论之中!

作者: xue258    时间: 2014-8-5 18:20

相关疾病:
肿瘤
其实穿代细胞培养是可以解决短时间进行大规模疫苗生产的问题.
但,许多传代细胞因为其肿瘤危险而无法进入疫苗生产领域,
好像只有vero 细胞目前可以.
还请更了解这方面情况的战友来聊聊.

作者: TNT    时间: 2014-8-5 18:20


相关疾病:
流行性感冒
谢谢楼上站友的大力支持.
也希望更多的战友参与讨论.
有时候,具不同知识背景同志提出的看似怪异的想法或提出的问题,
可能就是启发他战友的金钥匙!
所以,请路过的战友积极发表自己的见解.
本人在前2006年前主要做反向遗传,现在主要做疫苗研发方面。
二者是有一些交叉点,比如疫苗学里,就有一个叫反向疫苗学。
所以,本人更愿意往反向疫苗学做一点点阐述。
经典的免疫学提倡用病原体灭活或致弱后来做疫苗,这个是全病原体类疫苗,临床上,这种类型的疫苗至今仍然是主力军!部分病原体做成的疫苗则似乎多还处在研究阶段。
反向疫苗学也多用在部分病原体疫苗上,比如,分析基因序列后,扩增并表达一段保守且能诱导强免疫反应的蛋白抗原,加上一些佐剂等(提高免疫原性),制成疫苗。反向疫苗学方法也用在全病毒疫苗制备上。比如流感(呵呵,我是做流感多些。。。),就是置换表面基因HA,NA 后拯救出重排的病毒做灭活苗活冷适应苗的。
但是,这些方法仍然没有脱离经典免疫学理论的指导。
即,让机体事先接触抗原,机体然后产生抗性(特异性抗体和T细胞)抵抗病原入侵。
具体:通过实验,筛选出保护性好的抗原或病原体,大量扩增制备疫苗,疫苗接种,诱导机体产生抵抗特定病原体的抗体活细胞免疫。
如果,我们仍然是在这个理论下进行研究,那也还只是一些完善工作。
当然,完善工作也很艰巨和不简单,
在下先建议大家深入探讨如何完善目前的疫苗研究。
所以,大家请畅谈自己知道的疫苗制备方法,指出其优劣。

作者: toy    时间: 2014-8-5 18:20

疫苗研发,也是我目前感兴趣的部分,想简单谈一下自己的看法。
疫苗研究的关键,是建立在对免疫机理的理解基础上,而针对不同疾病的疫苗研发,详细了解其免疫机制和具体的信号代谢网络,将是一个关键因素,是设计的基础和以后成功的关键。 比如,阻断PD1信号途径,可以有效激活免疫耐受状态的T细胞反映等。
另外,在机理上设计的成功,后期的质量控制,代谢途径,定植位点等,都是关键。因此,目前开发基于特异有效的载体平台,也是疫苗的一个特色。比如,ghost,等

作者: toy    时间: 2014-8-5 18:21


相关疾病:
流行性感冒感染
确实,反向疫苗学现在也不算是个太新的名词,只是随着生物信息学,分子生物学等技术的发展才得以出现,也可以说是相对与传统疫苗开发上的一大进步。目前在研的大部分疫苗走的也是这条路线,与传统疫苗学相比,它具有省时、省力、经济而有效的优点,基于反向遗传技术开发的新一代流感疫苗可以说是典型代表。但是有一点,反向疫苗学疫苗的研究目前还集中在蛋白为疫苗靶点的基础上,对于一些多糖抗原为疫苗靶抗原的疫苗研究目前还没有很好的措施。
就如何完善目前的疫苗研究,个人觉得:
1,源于人工,更近天然:分子生物学的发展给了我们”制造”各中病原体的抗原蛋白(靶抗原)甚至活病原体(流感)的机会,但是在这方面我们需要做的则是让他们(表位,多肽等)的结构能够更接近与病原体的水平。让他真正的能够做到模拟“感染”之作用。
2,加快新型佐剂开发:佐剂的功能在以前我们或许是有些忽视,但是新近的很多研究表明佐剂在除了以在增强疫苗免疫原性(如DC靶向提呈),促进免疫细胞分化成熟,在诱导免疫应答倾向(Th1 or Th2),甚至在改变特异性T细胞克隆群等过程中都发挥了重要作用,疫苗界由此也掀起了一场开发新型佐剂的激烈战。新型佐剂开发也是疫苗研究的一大热点。
3,疫苗辅以调理:Treg的出现,也为疫苗研究者提供了增强疫苗效率的机会,目前已经很多疫苗(特别是肿瘤疫苗)的基础研究已经开始把靶点指向Treg这一个小群体,那就是如何去“压制”抗原特异性Treg的免疫负调作用。既然这只是一个小例子,但是确是给我们指明了一个方向:如何去调节免疫系统让他更好的去对疫苗产生反应,增强疫苗的效力。
4,寻求最佳疫苗免疫途径。
欢迎大家继续讨论!

作者: TNT    时间: 2014-8-5 18:21


相关疾病:
感染
高效佐剂的开发是条路子.
事实上也有许多牛疫苗公司在做这个方向.也有一些成熟的产品了.
因为,如果用更少量的抗原(蛋白)配与合适的佐剂也能诱导机体产生高免疫保护,
那就是间接的提高了抗原生产能力.
这对突发事件时,短时间生产大批量疫苗是非常有意义的.
不知哪位战友对佐剂有研究.
另外,BMSLJIAN 提到的"让抗原(表位,多肽等)的结构能够更接近病原体,即让疫苗用抗原能真正的能够做到模拟“感染”之作用。" 也是一个非常好的思路.
但不知道具体如何进行设计?
比如,是表达系统的改变还是其他?
还请对此熟悉的战友发表见解.

作者: TNT    时间: 2014-8-5 18:24

疫苗研发,也是我目前感兴趣的部分,想简单谈一下自己的看法。
疫苗研究的关键,是建立在对免疫机理的理解基础上,而针对不同疾病的疫苗研发,详细了解其免疫机制和具体的信号代谢网络,将是一个关键因素,是设计的基础和以后成功的关键。 比如,阻断PD1信号途径,可以有效激活免疫耐受状态的T细胞反映等。
另外,在机理上设计的成功,后期的质量控制,代谢途径,定植位点等,都是关键。因此,目前开发基于特异有效的载体平台,也是疫苗的一个特色。比如,ghost,等
......

==================

可否相对详细的说明下?
作者: TNT    时间: 2014-8-6 17:43



QUOTE:
原帖由 kent 于 2014-8-6 17:43 发表 bbcodeurl('http://bbs.antpedia.com/images/common/back.gif', '%s')

针对楼主提出的问题,我在这里以我的亲身感受描述一下。
我从事疫苗研发时间补偿,而且是在国内公司工作,国内现在疫苗研发甚至扯远一点,在疫苗大规模制造上的瓶颈我觉得在如下几个方面:
1,生产技术落后。国内现在大多数还处 ...

非常实际的问题!!!
这个是我们纯研究人员可能不擅长或比较欠缺,,,
鼓励这样的战友发言!
说到生物反应器道路和细胞工厂. 生物反应器无疑是非常诱人的,但,也正是楼上提到的,产量和纯度的问题.
比如,据我所知, 好像国内的浙江大学等单位就有用桑蚕蛹做表达系统做疫苗的.
这个应该避规了穿戴细胞系致瘤危险,产量也很高,成本也便宜,
但怎么提取和纯化呢?
产品有没有进入临床呢?

作者: toy    时间: 2014-8-6 17:44


相关疾病:
流行性感冒
龙博士提出这个TOPIC, 不管是在国内还是在国外,都是疫苗领域中的科研工作者最为关心和最想解决的事情。但往往令人失望的就是,没有任何一种疫苗是UNIVERSAL的,或没有人能保证对任何一种传染病能100%PROTECTION。包括对于流感病毒来说,这段时间有很多关于M2 UNIVERSAL VACCINE AGAINST INFLUENZA A VIRUS的文章,对我们人的应用前景,我看看可能不会比全病毒灭活疫苗能好到哪里去,对我们兽医来说,我想可能没有人会用这样的UNIVERSAL VACCINE。
就我的认识来说,免疫学的经典理论可能还要长期指导传统疫苗或现在新型疫苗的设计和发展。譬如,多少年之前,对于HIV 的防制,一窝蜂的认为体液免疫最好,美国的多少大牛们因为支持了这个观点,而获得的很多GRANT,但事情是瞬息万变的,现在在美国,好像细胞免疫站了上风了,先前那些认为能够诱导很好的NEUTRALIZED ANTIBODY, 就能预防HIV/AIDS的人现在也没有底气反驳了。但是真的抗原能诱导T 或B 细胞产生免疫反应,就一定能很好地预防HIV?可能谁也不敢这么说。防控某一种疾病,疫苗应该是最有效的手段之一,但也是受到很多因素的影响,就像上面的一些朋友说的,免疫原性,免疫途径和方式,抗原递呈,佐剂等等。
怎么办呢?我们都希望利用最先在的技术手段,集所有优点于一种疫苗上,行吗?我看也不可靠,什么东西都有个此消彼长的功能,就行药物上的配伍禁忌。就我知道的而言,一个PI在流感的疫苗上试了所以市面上很多的佐剂,像什么TB, MF95, CpG, Flegalin,等等,左后也搞不清楚那个更好,反而把自己弄糊涂了,有的刺激体液免疫,有的刺激细胞免疫。呵呵。
说了这么多,我的观点是,我们还是要立足免疫学理论,做好疫苗诱导免疫反应的具体机理。然后有针对性的设计疫苗。我现在挺感兴趣的包括:1. 现在一些PIs 做的关于T and B memory机理方面的东东。这些对疫苗的免疫原性,途径以及持续期都会有指导性的作用。
2,抗原递呈。上面的朋友也提到的DC在抗原递呈过程中的作用,direct presentation and cross presentation, 那个发挥主要作用,就我看得文章,我还不知道,但可能也有科学家已经解决了。3. mucosal immune or innate immune that are old topics I do not want to talk here. 4. Treg, 有点热门,但不在我现在的研究范围内,知道甚少。
这些纯粹纸上谈兵,欢迎畅所欲言。 我也很有兴趣看到更多的关于疫苗工艺化的帖子,那也是疫苗应用的重要一个环节。

作者: ALALA    时间: 2014-8-6 17:45


相关疾病:
流行性感冒
楼上提到了一个流感疫苗的问题,我也看到过了。但是我觉得这样的研究有意义,但不一定能够有结果。
我们都知道,疫苗要起作用,主要是激发人自身的免疫机制,产生抗体。说白了,就是用我们人自己的。注射进去的疫苗可以提供抗原决定簇。经典的免疫理论我现在还在阅读,谈不上有什么深解,但是我发现一个问题:病毒一旦变异,原先的疫苗就基本不起作用。这也是流感为何每年都发布新剂型,新毒株的原因。无论是全病毒,还是裂解病毒,都要求是当年使用。因此,一旦流感变异,人体获得的疫苗又不能提供正确的信息来生产抗体,那么免疫也就失败了。
所以,在流感这个高突变病毒类型上来说,我认为一种通用病毒的研究虽然可以解释致病机理和途径,可以在一定程度上推进疫苗学的进展。但是,前途也不容乐观。

作者: TNT    时间: 2014-8-6 17:45

流感病毒疫苗是比较热的,流感病毒也是突变很快的病毒.
对流感病毒疫苗,
前天看到一巴基斯坦(Pakistan ?)研究者在VIROLOGY发的文章,
其结果认为,从病毒中提取并纯化的NP 蛋白比HA 蛋白更具能诱导免疫保护性.
为什么不是HA呢?
"According to our data nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity/mortality and lowered viral shedding compared with antiserum from other viral proteins like hemagglutinin (HA) neuraminidase (NA), viral polypeptides mix, non structural protein and viral polymerase enzyme. "
这个研究似乎提示普通表达的NP与天然的NP蛋白不一样啊.... 这个也应该是疫苗研究和生产工艺设计需要特别注意的问题. 因为,原则上,NP是变异最小的,应该是可以提供比较广谱保护的, 但由于许多研究认为NP(表达的?)提供的免疫保护没有HA强,所以,NP的研究不是很看好.
除了流感病毒疫苗研究外,
也希望其他战友能就自己熟悉的其他病毒疫苗的研究发表看法.

作者: ALALA    时间: 2014-8-6 17:45

一个很实际的问题,也是目前我工作中的遇到的问题。细胞培养及病毒表达。我觉得也可以成为一个研究方向,毕竟我们还可以把现有的疫苗做的更好,是吧。
先说说我自己的问题吧。我们所现在在尝试用传代细胞培养病毒,但是病毒并不能很好的吸附上去。可能于病毒表面的蛋白结构与细胞表面蛋白结构有关。我也弄不明白,呵呵,我自己的分子生物学其实还很弱。
有一个阶段,病毒是培养出来了,但是表达量很少,驯化做的不好的缘故?
如果有人可以研究出一种细胞系,能表达大多数病毒,我想,将是疫苗界的一大福音。

作者: yueban-1147    时间: 2014-8-6 17:46


楼上的各位大虾都是大家式人物,小弟是做HIV疫苗的,属于纯研究性工作(事业单位)。HIV疫苗的研发是个艰巨而又漫长的工作,目前我们主要的精力还是集中在DNA 疫苗的开发中,最近一年,我们一直在摸索高效率佐剂,但是效果也不是非常理想,体外转染试验做了无数,摸索了N多条件,一直没达到理想水平。前段时间在南非召开的国际会议,也有人报道采用电击法增加转染效率,但是个人认为日后上临床的话,会不会是个瓶颈。
小弟初来乍到,希望可以抛砖引玉!也同时希望HIV疫苗早日开发成功,昨天就是世界艾滋日,看到那些患者,也是感慨良多,只是期盼早日攻克世纪瘟疫。

作者: 2541    时间: 2014-8-6 17:47


相关疾病:
流行性感冒感染
看了这么多,也来谈点自己的认识和某些点滴(不成系统).
现在的疫苗开发无法离开经典的免疫学理论指导, 更谈不上有任何可以跳过经典理论的新理论.
疫苗免疫的起作用机制是什么? 是诱导免疫学记忆,要产生记忆先要有接触史。而memory的产生有三个方面:抗原, 共刺激(抗原递程)和炎症因子(佐剂)。与免疫保护有关的,又要考虑Th1 or Th2, 体液免疫和细胞免疫。而针对不同的病原,通常又有各自的特殊偏重。
对于免疫记忆,我有个突发奇想:如果能在体外诱导免疫记忆(tetramer 技术体外递程,后续诱导(各因子诱导)……,那我们就可跳过经典免疫理论,不用打疫苗,而是transfer记忆细胞(人源的)就行了。
现在大家的focus 似乎更多是抗原,包括免疫原性,免疫途径,其中探讨的是全抗原中哪个部分诱导保护,起保护的类型是体液免疫还是细胞免疫。对每个病原,都需要单独去深入研究免疫机理才能回答这些问题。像对于流感这种变异太快的病毒,开发保守的偏重细胞免疫的表位通用 疫苗是不错的选择(除非你有更好的方式对付变异)。
对于兽医方向来说,应该是多关注细胞免疫的时候了。我觉得很有前途和优势,因为可以直接在本动物上做实验。
对于从抗原递程方式改进疫苗,我知道有人采用DC免疫,具体哪个病原一时想不起了。还有就是对非蛋白抗原的递程,gamma delta T cell起着重要作用。
对于佐剂(炎症因子),有可能有反作用。曾经读到文章,在李斯特菌感染前注射抗生素可以减少感染后诱导的效应细胞的规模从而加快记忆细胞的产生,其原因是减少了促炎因子的产生。而佐剂有增加促炎因子的效果。依此类推,推测弱毒株感染引起的炎症较强毒株引起的弱,其诱导的记忆细胞更快或更好,也或是减毒株疫苗诱导免疫保护的机理之一。不过,现在没有去验证。
我现在考虑的是,病毒诱导急性感染或慢性感染似乎是病原自身的特性决定的,但其机理是什么呢?而有的病原,如LCMV在实验条件下可以造出两种感染类型。困惑ing.

作者: ALALA    时间: 2014-8-6 17:48


楼上的朋友说的一个方面我觉得很有意思。就是体外诱导免疫记忆,然后转移记忆细胞到人体就行。
是否可以这样理解,把抗原侵入细胞的过程和抗原呈递过程在体外进行完毕,直接作用在人体内的仅仅是抗体产生及作用于抗原的过程?望指正。
如果和我上面说的一样,我觉得有一个问题,人与人有差异的,我们移植的器官会引起自排异现象,那么引入的记忆细胞呢?是否也会成为一个抗原?如果是这样,其实际作用并不是产生病毒对应抗体,而是产生记忆细胞对应抗体。那么,和引入杂蛋白进入人体是一个道理,虽然是人源性蛋白,但仍旧会有很强烈的副反应。
此外,排除副反应的话,体内表达任然是一个坎。记忆细胞如何从血液进入淋巴?如何在淋巴中指导抗体表达,是一个不同于自体记忆细胞的过程。我觉得很有难度,至少进入人体免疫系统就比较困难。毕竟,是一个外源蛋白质。

作者: TNT    时间: 2014-8-6 17:49

........
对于免疫记忆,我有个突发奇想:如果能在体外诱导免疫记忆(tetramer 技术体外递程,后续诱导(各因子诱导)……,那我们就可跳过经典免疫理论,不用打疫苗,而是transfer记忆细胞(人源的)就行了。..........

==========================================================================================================

这个想法非常好!!!
我印象中上好象有人在向这方面的尝试了(应该是个人交流方面的信息....记的不是很清楚了).
大概原理有点类似:
人工诱导B细胞分化,也可说是模拟B细胞面对不同病原刺激后,其编码IgG等基因发生的突变....然后反过来做病原未来的突变模拟.达到:1.预测病原进化和,2.提前获得能对付未来病原的B分化细胞(产生未来病原的抗体的B细胞).
很有意思啊....
大家继续发言说说您的看法...

作者: kuohao17    时间: 2014-8-6 17:50


相关疾病:
浆细胞白血病黑素瘤传染病
呵呵,讨论很激烈哦.
关于细胞回输,目前主要集中在DC疫苗上,当然临床应用于白血病,黑色素瘤等已经取得比较好的效果.
各位朋友提到的transfer记忆细胞的问题,不失为一种方法,也在一些文献中报道,当然这里主要目的还是研究疫苗的保护性机理.要是作为一种疫苗的话还需要考虑很多问题,个人认为.
1:T,B和DC(APC)细胞必须来自于个体本人,(或许脾细胞就是比较理想的细胞).体外刺激活化后后回输.(这里还牵涉到T,B记忆细胞的分选),另外相对与DC来说,机体T,B细胞的分化条件是非常复杂的,体外环境难以模拟体内的分化模式.
2,阈值的确定,这一点对于T细胞来说尤为重要,因为过量的活化的T细胞或者CTL细胞的产生可能造成的细胞因子风暴会对机体产生很强的免疫病理损伤.
3,记忆细胞相对来说是长寿的(尤其是TC),尽管记忆细胞的维持是否需要长期的抗原刺激还没有最终明确的答案,但是目前还是有越来越多的证据表明小剂量的抗原刺激(在体内则是FDC表面的IC)是记忆细胞维持所必须的.所以体外的记忆细胞回输不能保证他的长寿.
个人一家之见,觉得transfer记忆细胞的难度还是蛮大的.
DC回输或许在肿瘤疫苗和慢性病毒感染上可以推广,对于传染病的预防,相对注射或其他免疫途径,细胞抽取后回输的痛苦还是比较难以接受.

作者: baidukk    时间: 2014-8-6 17:50

相关疾病:
传染病
其实,在我脑子里一直有这样一种很粗浅的想法。基本上无论是细菌性传染病或者是病毒型传染病,其治病机理多半为抗原在体内侵染正常细胞,进行繁殖,在繁殖过程中产生毒素或其他物质,抑或引起强免疫反应,造成机体损伤。
如果我们可以研制出一类疫苗,将人体正常细胞表面的蛋白结构保护起来,就好像给细胞穿上一件衣服一样。那么无论是来细菌或者是病毒,那么受侵染的可能性会大大降低,甚至达到百毒不清的地步。说白了,就是改变人体细胞表面抗原结合位点来达到免疫的目的。不知这样的研究是否太超前?哈哈,就当是提出的一种见解吧。

作者: TNT    时间: 2014-8-6 17:51

其实,在我脑子里一直有这样一种很粗浅的想法。基本上无论是细菌性传染病或者是病毒型传染病,其治病机理多半为抗原在体内侵染正常细胞,进行繁殖,在繁殖过程中产生毒素或其他物质,抑或引起强免疫反应,造成机体损伤。
如果我们可以研制出一类疫苗,将人体正常细胞表面的蛋白结构保护起来,就好像给细胞穿上一件衣服一样。那么无论是来细菌或者是病毒,那么受侵染的可能性会大大降低,甚至达到百毒不清的地步。说白了,就是改变人体细胞表面抗原结合位点来达到免疫的目的。不知这样的研究是否太超前?哈哈,就当是提出的一种见解吧。
......

================================================================================

相关疾病:
传染病

主意不错!
这就是这个讨论专题的目的,
具不同专业背景的战友肯定对疫苗有不同的看法,
来来来,充分发挥个人的想象力,
根据自己拥有的知识,提出一些不同的思路,想法和看法.
大家知道, 想法/思路对科学发展是非常重要的,
很多看起来似乎不可思议的想法也许就是一个绝妙的出路,
更也许就是一个新理论的雏形!
也非常欢迎和期待讨论对现有疫苗研究理论和技术的改进.
不同专业背景的战友阅览其他战友发的贴子肯定会有不同的理解,
也就肯定有不同的收获.
所以, 任何关于免疫/疫苗学的,有助于提高我们解决研究问题的,增加我们相关生物学知识的帖子, 都非常欢迎.

作者: 9妖9    时间: 2014-8-6 18:01


相关疾病:
病毒感染感染
可以看出大家的思想很活跃,不过我觉得有几个指导思想上的偏差可能需要纠正:
1、经典免疫学理论非“古典”免疫学理论,更非“过时”免疫学理论,不必硬要揪出个所谓新理论来代替。即便有新理论的出现,也只可能是在原有的理论基础上的修正和补充,例如危险信号理论。而alishang同学所说的transfer 记忆细胞的想法也并未跳出“经典”免疫学(如果非要说“经典”)的理论范畴,实际上从过去到未来,免疫学理论都会是一个不断完善的连续的体系。
2、关于Universal Vaccine的问题,这和讨论研制包治百病的灵丹妙药一样可笑。病毒的种类千差万别,病毒的致病机理机理千差万别,甚至不同的人种和发病群体也存在差异,那么对付病毒的方法必然不同。这也是科研和医学的魅力所在。当然在一定范围内某一种类的疫苗是有一定的通用性的,比如DNA疫苗或活载体疫苗,有时候变换一下抗原就可以做为另外一种疫苗使用。但是这毕竟是有限制的,因为病毒和免疫系统的相互作用实在是太复杂了,甚至不仅仅是抗原抗体或细胞杀伤这么简单,还有很多相互调控因素在起作用。
在我看来,今后的疫苗研究很可能会“真正”向基础研究倾斜(因为“注重基础研究”已经叫嚣很多年了,但又有多少研究机构这样做了呢?特别是在中国),人们越来越深刻地认识到我们对病毒、免疫系统的作用方式和相互关系知道的实在是太少了。Merk的Ad5为载体的HIV疫苗的失败就是一个例子:千辛万苦研制的疫苗不但不起保护,居然还对病毒感染有增强作用!这简直就是对广大科研工作者的迎头痛击,也是当头棒喝!“别轻易追求你不了解的女人”这在疫苗研制中同样适用。
当然疫苗的研制还是要继续,但是短期(起码十年内)不会有大的进展。主要还是在免疫类型、抗原选择改造、载体(包括基因佐剂)改进、免疫途径和策略以及动物模型方面做一些零打碎敲的工作。在这里值得一提的是动物模型:HIV疫苗的研制之所以如此艰难,其中一个重要原因就是缺少合适的动物模型,不管是免疫重建小鼠、Shiv短尾猴还是FIV-猫,这些模型不能很好地模拟HIV-人的实际情况,疫苗可以轻易控制病毒在这些模型中的复制传播,而一到临床阶段,则溃不成军。所以动物模型方面如果能有突破将是非常了不起的成就。
随着认识的深入,病毒和机体的关系越来越象哲学问题,处处充满了辩证的思想:HIV的感染导致免疫抑制,但是不正常的免疫激活所引起的细胞凋亡才是免疫抑制的主要原因;DC细胞是呈递病毒抗原引起免疫的主力军,但也是携带HIV,以接触方式感染T细胞的病毒库和病毒感染的定位系统;T细胞的活化是杀死感染细胞的最有效方法,但是活化的T细胞却更利于病毒的复制和传播...... 病毒和机体之间处处存在着平衡点,而未来的疫苗则应该着眼于大局,对整个网络系统进行全局考虑,以免疫系统调控者的角色在这个天平上进行砝码的加减。这应该是应该是一种广义上的疫苗,也许称之为免疫调控系统会更合适。这条路毫无疑问很难也很远,甚至现在根本看不到可能的目的地。但是如果不向这个方向前进,我们永远只能在诸如细胞免疫好还是体液免疫好这类观点之间左右乱窜,而最后一片茫然。

作者: TNT    时间: 2014-8-6 18:02

相关疾病:
流行性感冒
非常感谢"亮助"战友的全新观点!!!
本人也非常赞成您的观点, 尤其是关于动物模型的创新和"对整个网络系统进行全局考虑,以免疫系统调控者的角色在这个天平上进行砝码的加减。这应该是应该是一种广义上的疫苗,也许称之为免疫调控系统会更合适。"这句话.
疫苗的研究至今,不能再是盲人摸象的模式了.
需要站在更高的位置来思考如何解决目前面临的棘手问题.
而对此,基础研究毫无疑问是最重要的, 正如"亮助"战友提到的HIV问题, 美国NIH也在前短时间对临床实验屡次失败的进行经验总结后,决定加强基础研究了.
所以,我国的疫苗研究也应该如此反思了.
我,包括几个战友的确希望能有一些理论的突破来开发出相关的Universal Vaccine,
在这里,请容许我稍稍解释下(呵呵,千万误会我的观点哦,,,,,),
我的理想状态的Universal Vaccine是针对单一疾病的,
比如,流感, 大家知道,流感疫苗每年都需要更新.因为,传统的流感疫苗无法抵抗来年的变异株. 如果能用流感保守抗原做疫苗,是不是可以达到这个目的呢? 比如,NP, M蛋白? 这个已经有许多研究报道了,但目前为止,效果仍然不尽人意.
所以,我想我们需要换个角度考虑问题了.

作者: 89tongzijun    时间: 2014-8-6 18:02


新理论的出现需要一定量的积累,我觉得现在新理论的出现已经有很多的实际研究基础,针对单一疾病的通用疫苗,我个人也十分希望能够在新理论的指导下建立。新理论必将出现,这个只是时间问题。我抱有很强力的信心。

作者: free    时间: 2014-8-6 18:03


共享1篇综述:
European Journal of Pharmaceutical Sciences
Opportunities and challenges in vaccine delivery.

作者: free    时间: 2014-8-6 18:03


Bull Acad Natl Med. 2008 Mar;192(3):511-8; discussion 518-9
New vaccination strategies
Pasteur put vaccination on an empiric and experimental basis during the 1880s, and vaccine development proceeded slowly until the second World War. During this period live vaccines against bacterial and viral diseases were developed by attenuation through passage in animals and killed microbes were inactivated without destroying their immunogenicity. Moreover, knowledge of bacterial toxins and polysaccharides permitted the development of new vaccines for several epidemic diseases. At the beginning of the third century of vaccination, classical methods are still providing new vaccines, but molecular biology and genetic engineering have begun to influence vaccine development. In addition, for the first time basic immunology is contributing to the domain of vaccinology. Thus, the current trends in vaccine development are as follows: reassortment of segmented genomes, attenuated strains recombined with genes from pathogens, vectors carrying foreign genes, replication-defective particles, DNA plasmids, and reverse vaccinology, among others. Also, new methods of vaccine delivery besides injection will be used and new adjuvants will be added to vaccines in order to stimulate specific responses. The future of vaccination is promising.

作者: free    时间: 2014-8-6 18:03


关于 universal vaccine, 第11届全球疫苗会议也有叙及。参看下面的文献:
IDrugs. 2008 Jul;11(7):471-4.
Vaccine Research--11th Annual Conference: cutaneous formulations, universal vaccinations and recently licensed vaccines.

作者: hold住    时间: 2014-8-6 18:04


如何设计和生产出与天然原体(成分)高度一致的抗原,进而有效刺激DC细胞应该是关键。

作者: ALALA    时间: 2014-8-6 18:04


要设计出高度一致的抗原比较困难,现在很多病毒制成毒种进行疫苗研究或者生产的时候,已经弱毒化,也就是说,与街毒的毒力不尽相似了。只能说,能够产生特异性抗体就可以。我觉得只要能够刺激免疫系统产生抗体,就能说明该疫苗成功。
但是,MM香的观点我也同意,如果设计出来的抗原不能有效刺激DC细胞,那么便失去打疫苗的意义。可能她的意思更倾向于基因工程疫苗或者核酸疫苗方面,而我们现在设计,研究,使用的疫苗,大部分还是从街毒研制的。毒种的选择和培养,病毒库的建立,是一个很重要的方面。

作者: TNT    时间: 2014-8-6 18:04


相关疾病:
感染天花盲牛痘传染病
转来一点天花苗免疫的历史, 我是在网上GOOGLE到的,
1是想以古鉴今,2 是让我们认识下自己目前的工作是历史长河中的一份子......
几百年前,中国古人发明了痘病毒疫苗,改变了历史.
今天,我们从事的工作也可能可以改变世界......
且,请大家思考,接种了天花疫苗,或感染过天花后(幸存者)是不是真的可以终生免疫呢?
如果可以,那是什么原因,机制是什么?
天花大约于公元一世纪传入中国,由战争中的俘虏传来,故名虏疮,后又有宛豆疮、天行发斑疮、痘疮、痘疹、天痘、天花等诸多病名。晋代医学家葛洪(公元265~313年)在所著《肘后方》一书中首先记载了虏疮。
  天花是由天花病毒所致病,因其传染性强,多次酿成大流行给人类带来灾难,重者致死,免于亡者可因皮肤脓疱遗留瘢痕成为麻脸,也有伤及眼而失盲的。患过天花如存活者可获得终生免疫。
  后来在世代罹患天花而有不同结局的情况中,中国的先民们思考到,是否可以人为地患一次轻微天花而能蠲免死亡或麻脸,并获得终生免疫。民谚也称:“生娃只一半,出花才算全”。由此而逐渐蕴发了“即毒消灾”的免疫学思想。通过接种天花患者的痘疮泡浆、痘痂等,使其出一次轻微天花而获得免疫。据文献所载,早在唐朝始有种痘。
  中国科学技术馆馆长王渝生先生介绍说:
  “中医药学在中国历史的发展过程中,有几个亮点。一个是是预防医药,另一个就是免疫学。免疫学也是预防医学的重要方面。人们普遍认为,近代医学科学中,最伟大、最有益于人类的学科之一——免疫学,产生于人类为预防天花而施行的‘种痘’实践中。中国比其他任何国家,对‘种痘’实践的文字记载要早得多。
  在1884年武荣纶与董玉山合撰的《牛痘新书》中写到:“考上世无种痘诸经,自唐开元间,江南赵氏始传鼻苗种痘之法。”
  王渝生先生说,中国古代大约在公元一千五百年前后,就有好几本医书介绍了对付天花的方法,主要是预防天花,实行“人痘接种”。
  “在中国的各种医书上,‘人痘接种’有这样的几种方法,一种叫‘痘衣法’,就是把得过天花的孩子的衣裳脱下,让没有得过天花的孩子穿在身上,那么他就受到了一些轻微的感染。还有一种叫‘痘浆法’,就是得了天花的人身上要长烂疮啊,上面就有天花病毒的‘浆’,就把这个浆花蘸下来,设法弄到没有得过天花的孩子的鼻孔里面。那么他就免疫了,但是比较危险。”
  在古代中国的明朝和清朝时期,医生队伍里已经有以种痘为业的专职痘医,清代国家还设立种痘局,并有专职官员“查痘章京”专门管理出痘人的隔离情况。明清时已有几十种痘科和种痘专书,都记录着不同的种痘方法。从最初的痘衣法、痘浆法,到干苗法和水苗法,再到后来的分“时苗熟苗”。对此,王渝生先生介绍说:
  “后来呢,中国人就发现了‘干苗法’和‘水苗法’。(‘干苗法’)就是用‘人痘’生下来的痂,取下来磨成粉,然后把这个粉吹到没有得过天花的孩子的鼻孔里面去,让他受到轻微感染,增长免疫力。而这种方法浪费比较大,就用‘浆’拿下来保留着,用水剂把它和好,来灌到孩子的鼻孔里面。总之,这种方法危险性比较大。古代有记载:所谓‘时苗熟苗’,就是把这种人得了天花过后的病毒,拿来经过多次接种,使它成熟了之后,既减少了它的毒性,但是又能够使人对它产生免疫力。”
  人痘术在当时是领先的技术发明,受到各国的重视,先后流传到俄罗斯、朝鲜、日本等国,又经过俄罗斯转传到土耳其及欧洲、非洲各国。法国思想家伏尔泰则以敏锐的眼光赞扬这孤明先发的免疫技术,他在《哲学通讯》中一封《谈种痘》的信中称赞道:“我听说100年来中国人一直就有这种习惯,这是被认为全世界最聪明最讲礼貌的一个民族的伟大先例和榜样。”
  天花是迄今为止人类消灭的惟一传染病,“种痘”技术对此发挥了最大的作用,并由此而勃发了免疫之学,它经过了从“时苗”到“熟苗”和从人痘到牛痘的长期历程,其中也包含了中国人所贡献的智慧。
天花疫苗吹鼻法应该是黏膜免疫了,
因此,许多研究呼吸道疾病疫苗的大牛也认为如何有效刺激IgA的产生对预防呼吸道病原感染是非常重要的, 也有研究认为,这个也是产生"cross-protection"的基础,
因为,IgG在这点上是比较弱的.
而针对如何刺激表皮下的DC细胞,有人也建议用"patch vaccine",
这个疫苗接种方法不知道是不是借鉴了我国江湖郎中的各种贴膏.........呵呵!
但,看起来,这个途径递送抗原对引发IgA的产生,似乎是可行和有效的.

作者: TNT    时间: 2014-8-6 18:05


单说病毒
或者,
是不是需要从病毒的起源角度,来考虑如何制定预防和消灭对人类有害的病毒?
病毒的起源的三种代表性学说。
第一种学说认为,病毒是地球上生物进化过程中的一种最为原始的生命物质,病毒既具有化学大分子的属性,又具有生物的部分特征。
第二种学说认为病毒是一种高级微生物的退行性生命物质,微生物细胞在生命历程中的部分基因丢弃使其丧失独立的自我繁殖能力,最终退化为病毒。
第三种学说认为,病毒来源于正常细胞的核酸,因偶然途径从细胞内脱离出来而变为病毒,这就是目前比较流行的病毒起源的内源性学说。
???

作者: gemei0115    时间: 2014-8-6 18:05


疫苗解决人群疾病防治的关键,使用疫苗与寻找疫苗一样刻不容缓!国人停留在依靠药物的观念需要更新了。

作者: 969    时间: 2014-8-6 18:05


推荐:Next Generation Vaccines 福布斯一年前的文章07年12月。
cuturl('http://www.sanaria.com/pdf/Forbes%20Wolfe%20Emer%20Tech%2012.07.pdf') (在其PDF的第3页Next Generation Vaccines,共2页的内容。)
该文讨论了 抗原的选择,佐剂的研制和delivery system 这疫苗研究领域的 三驾马车,都是从实战角度讨论的哦,都有具体的在研的商业例子。然后终于介绍了商业疫苗领域的那几颗立在大大的蛋糕之上极为鲜艳的“草莓”:Wyeth's Prevnar($2 billion
in annual sales) and Merck's Gardasil(HPV疫苗。$235 million in sales in 2006 and is
projected to reach $1.6 billion by 2009.)不过,接下来引用的一个数据正好足够说明了对未来的不可预测性。它引用了Lehman Brothers的数据;这家盛名的金融公司竟然在今年倒闭了!仅仅一年就成为历史了!它也讨论了HIV疫苗临床试验的失败,这对于HIV疫苗研究实在是个很大的打击呀。不过,它还是对其它疫苗保持了乐观。最后列举了几个有可能近期有突破的疾病(其实包括太多了)。
最突入我眼球的其实是那么多的dollar,又是million又是billion。哈哈。 这种商业/技术分析,也可以做到这么专业,实在让我们看到差距呀。

作者: TNT    时间: 2014-8-6 18:06

的确, 抗原的选择,佐剂的研制和delivery system 是疫苗研究领域的三驾马车.
其中, 抗原应该是核心部分.
抗原的选择,构建和修饰等等.
这里一篇文章, 提供一个对抗原进行修饰的思路.
"Deceptive imprinting and immune refocusing in vaccine design "
地址:
cuturl('http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TD4-4TN5GDC-4&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=259921bd152dc4a1659c9509b4ffb1b8')
其实,这个理论已经提出10多年了,但是,他们似乎并没有取得重大的突破性进展.
个人认为理论很好,问题关键是没有联合其他技术理论进行综合研究.
"去掉容易突变的而且是无效的抗原表位, 突出保守的,具有能诱导中和效价的表位."
作者1999年的文章: Deceptive Imprinting: Insights into Mechanisms of
Immune Evasion and Vaccine Development.
(文章大于1MBb, 还请教斑竹如何上传? 感兴趣的战友可以GOOGLE查题目看摘要,或P我要全文.)

作者: orangecake    时间: 2014-8-6 18:07


疫苗不能总是突出人,更应该突出在食品上,疫苗是食品安全的保障之一。打理发展安全有效的口服疫苗,将是个大大的商业机会。可能还是个暴利行业。

作者: 66小飞侠    时间: 2014-8-6 18:07


楼上的都是牛人啊,希望以后多点看到类似的讨论,但是不要太专业了,上面很多内容我都看不懂,我是一个在基层工作的保健医生,平时的工作主要是与计划免疫有关,所以比较关心这方面的话题,但是看不懂,上面那么多牛人,可不可以推荐两本基础一点的书籍

作者: abc816    时间: 2014-8-6 18:07


相关疾病:
感染
阻止性条件反射=免疫?
从那只喜欢与人交往的加拿大白鲸联想到。
The Scientist网络杂志。
cuturl('http://www.the-scientist.com/news/display/55262/')
Saving Luna
What can science learn from one lonely killer whale?
让人类对它进行一些故意的轻微攻击,疼痛,但不致伤,更不致命。
这样就可以提醒他:人类会造成疼痛,离得远一点才好。于是拯救了他。否则这类鲸又会被拖船螺旋桨弄伤弄
死。
人体免疫,如天花接种,也是先拿小的感染/伤害刺激人体。让它知道,这些微生物虽然"看"起来挺可爱,但却
是有害的,
人体和白鲸一样,犯的致命错误是:把掠夺者看作可爱的,可以一起玩的同伴。
人,不接触真实的老鼠、狮子、老虎的话,会觉得他们挺可爱。

作者: dragonkilly    时间: 2014-8-6 18:08


疫苗以后的目标不仅仅是预防疾病,治疗疾病同样有前途。
治疗性疫苗的作用对象则为曾经感染的病原体,天然结构的病原体蛋白一般难于诱导机体产生特异性免疫应答。因此,治疗性疫苗必须经过分子设计,重新构建,以获得与原天然病原体蛋白结构类似,但又不同的新的免疫分子。治疗性疫苗旨在打破机体的免疫耐受,提高机体特异性免疫应答。
怎样打破免疫耐受是治疗性疫苗研究的关键。
另外,佐剂的使用和开发确实也有意义,比如粘膜免疫佐剂的开发,说不定以后可以有“疫苗吧”或者“疫苗霜”。
植物疫苗,如:土豆疫苗,西红柿疫苗。
哈哈,疫苗“钱”景广阔,同志们仍需努力!

作者: toy    时间: 2014-8-6 18:08


讨论很精彩。疫苗与免疫学有着紧密的关系。刚刚学完高级免疫学,独特型网络概念的提出又多了一种制造疫苗的新思路。可以用体内产生的抗原内影像代替剧毒的抗原做疫苗。

作者: xue258    时间: 2014-8-6 18:10


Experts: AIDS Vaccine Research Has "Lost Its Way"
BOSTON--Two prominent researchers have bluntly assessed the depressing state of AIDS vaccine research and have urged the U.S. National Institutes of Health (NIH) to correct its course.
In back-to-back plenary talks at the 15th Conference on Retroviruses and Opportunistic Infections today, Ronald Desrosiers, director of the New England Primate Research Center in nearby Southborough, said he thought that NIH--the world's largest funder of AIDS vaccine research--had "lost its way," spending too much money on developing and testing products and not enough on basic research. Virologist Neal Nathanson, a professor emeritus at the University of Pennsylvania who formerly headed NIH's Office of AIDS Research, echoed Desrosiers's plea that more money go toward risky, innovative studies.
The trigger for the unusually harsh public critiques of the field came last fall, when an AIDS vaccine that many considered the best prospect in development bombed in large clinical trials (Science, 16 November 2007, p. 1048). Recapping that failure, Desrosiers, who tests AIDS vaccines in monkeys, went so far as to contend that a useful vaccine is not even on the horizon. "None of the products in the pipeline stand any chance of being effective," asserted Desrosiers, because the field is hampered by many unknowns, such as an understanding of which immune responses a vaccine must elicit. "We need to do a much better job of bringing to clinical testing only products that show significant promise."
Clinical studies receive about one-third of the nearly $600 million that NIH spends on AIDS vaccine research a year, most of it coming from the National Institute of Allergy and Infectious Diseases (NIAID). In January, Desrosiers and 13 other researchers privately wrote NIAID Director Anthony Fauci about their concerns that the field was adrift. "The letter was a good outside tweak about something that I was already thinking," Fauci told Science at the meeting here. Fauci said NIAID plans to hold a daylong AIDS vaccine "summit" on 25 March to explore how to move forward. It will be open to the public and webcast. "The real issue is the balance that we want between discovery research and development," said Fauci. "We need to take a time out."

作者: memory    时间: 2014-8-6 18:10


就疟疾疫苗的研究来谈谈我自己的看法。
现在的疟疾疫苗主要来说有两种,一种就是减毒子孢子,另外就是筛选的抗原合成的人工疫苗。减毒子孢子无疑是最为有效的疫苗,但是由于传播媒介蚊的影响,使其不可能大量的生产。另外就是人工合成疫苗,现在做的最远的就是RTS-S,是以子孢子CSP为主要抗原的一个亚单位疫苗,但是现在临床试验证实一方面人群的接种效率不高,只有40%左右,另一方面其抗体的维持时间过短。
所以在我看来,疫苗的研究,特别是对于胞内寄生的病原体来说还有很远的路要走。第一,合理的有效的抗原的筛选,筛选的抗原不仅仅是在某个时期高度表达的,最关键的我觉得应该是对病原体性状改变及其重要,并且在遗传上相对稳定的抗原。比如疟原虫的CSP,各个虫种,甚至株之间都有很大的遗传多样性,不可能说每个虫种,种株都去设计一个疫苗吧。第二,病原体免疫逃避的机制仍待深入的探讨。病原体从其诞生到现在,和人的斗争经过了N代,所以它也已经能够很好的适应人体的环境,那么找到病原体逃避人体免疫的方式,甚至其重要的调控的基因……it will be an striking discovery。第三,如何维持有效疫苗在人体的滴度,不需要更多次的频繁的接种。
所以说,机制的研究在目前看来,还是许多病原体疫苗研究方向最为迫切的问题,同时,相关的免疫知识的完善和进步也是尤为重要的。

作者: xueyouzhang    时间: 2014-8-6 18:11

相关疾病:
疟疾传染病肺结核糖尿病脑型疟疾感染疾病
等了这么久,终于有网友提到了疟疾疫苗!
我在疟疾领域,和我的一些同事一样,每年长期在欠发达的热带国家现场开展疟疾项目(期待回国呀),我自然对疟疾疫苗很关注.
先来说说freecell推荐的"The end of the beginning: Vaccines for the next 25 years". 谢谢推荐,拜读了. 我曾查询到这篇论文,但没有机会看到全文. 但是浏览完后,对这篇评论文章很失望.评价两个字---"垃圾"(对不起).
疟疾现在仍作为 全球 三大传染病之一(HIV;肺结核),当然,现实中受疟疾折磨的都是落后的国家,连中国海南岛也不常见了.作者通篇都未有提及疟疾的字眼.哦,作者更关注理论上潜在的威胁,而忽视现实的疾患:1918西班牙流感H1N1重出江湖(或者重组出新的HxNy),oh, SARS东山在起, oh,美国在世界上打来打去,大家都得小心Bioterrorism呀. 况且,疟疾疫苗今年取得了重大的进展(当然,该文发表在前,但是,这个进展是持续的,其积极的苗头已经显现.).作者来自英语世界,不存在科技语言和文献的障碍,如果不是作者有意的忽视疟疾,那么就是疟疾在他的疾病谱中,不占有位置. 作者通篇讨论疾病的都是所谓的当前热点.文中作者表达了"with a call for superhuman action for us to reach out far way from science into policymakers and decision and finance people." 套用作者自己的逻辑,以彼矛攻彼盾,如何? 印度(或者中国)将目光瞄准月球,而对大量的HIV,TB,糖尿病等等都视而不见,又如何? 作者自己本人就有视野的盲区,如何能达到最大善意的影响政治家/金融家而促进人类的健康?
感谢maoadai提到了RTS,S疫苗. 在08年12月8日,新英格兰医学杂志发表了2篇RTS,S疫苗II期临床试验的文章,同时配以一片评论文章. 采用新的佐剂后,该疫苗的保护效果达到了60%(具体有几个数据,对于恶性疟感染的保护效果,对于恶性疟发病的保护效果,可以去察看全文.) 试验表明疫苗安全,且其中一个试验表明其可以与婴幼儿的常规疫苗接种联合使用,这将大大简化该疟疾疫苗的使用.这是疟疾疫苗的重大进展. 这些数据支持 由 葛兰素史克联合盖茨基金开发的这个疫苗在09年初 在非洲7个国家11个地点,共16000婴幼儿的III期临床试验. 这是目前为止, 唯一一个开发到这个阶段的疟疾疫苗. NEJM的文章一发表, 立刻引起了国际媒体的关注. 纽约时报发表社论,高度评价了这个进展,给与 盖次基金 应得的赞许. Wall Street Journal,卫报 和经济学人等 都有文章介绍这个进展. 这个上市前最终的III期临床试验预计费用为1亿美金. 关于III期临床的成功率,我看到有专家的意见是50-50.
60%的保护效果,相对于其他很多疫苗,都是有差距的, 但是,及时是不完全的保护效果,依然可以挽救很多非洲儿童的生命. 这也是很多专家的意见.
对于佐剂:
该两项II期临床试验采用了新的佐剂,其中一个特别设计以提高免疫反应的佐剂,它产生的抗体是另外一个的10倍; 两者的保护效果都高于先前发表在lancet的30%的保护效果.
maoadai也提到了减毒子孢子疫苗.就有这么一家纽约的生物公司,专门研发这个疫苗. 我前面推荐的文章中,对这个公司也进行了介绍. 解剖蚊子,取其子孢子,用Gammar射线处理后, 该子孢子可以完成入侵肝细胞的过程, 且能在肝细胞短暂存活,但是它不会产生裂殖子释放入血液.所有的过程都符合FDA的规范. 该公司也从盖茨基金获得了millions的基金以开发.NIAID的头头,感染性疾病的专家Fauci对其这个公司也有很积极的评价. 如果RTS,S疫苗最终能如期在2012年上市,那么我相信, 这家公司开发的减毒子孢子疫苗其保护效果会更好.
(让我表达一下对盖茨的敬意! 呵呵)
不过,疟疾疫苗还有其他的靶点,除了瞄准子孢子过程;还有红细胞期的滋养体(rings/trophs);还有瞄准配子体期望阻止传播的疫苗.
我认同freecell推荐的文章中,作者认为当前的疫苗基本都是做出来的,而不是设计出来的.
关于HIV疫苗, Fauci 08年下半年Stupid在NEJM上发表了了一片评论文章,承认当前HIV疫苗研究的困境,认为应该寻找新的途径和思路.推荐给大家浏览.

作者: xue258    时间: 2014-8-6 18:11

人类迄今使用的大多数疫苗为灭活或减毒病毒疫苗,但是目前还没有人完全理解一种有效疫苗的免疫学机制。

===========================================================================================================

Re:【讨论】免疫学发展史上产生的诺贝尔生理学与医学奖

出于安全性的考虑,主流领域几乎完全回避灭活或减毒HIV病毒疫苗的研究,因此,HIV疫苗研究迄今为止还面临着与HIV被发现时同样的挑战,其根本原因在于我们对免疫现象的理解仍然存在相当的局限性。
2008年10月3-5日在德国纽伦堡举办的2nd World Conference on Magic Bullets (Ehrlich II) 上有很多Presentation涉及疫苗的研究。
cuturl('http://www.dxy.cn/bbs/post/view?bid=163&id=12486450&sty=1')

作者: glass    时间: 2014-8-6 18:12


相关疾病:
疟疾寄生虫病
寄生虫的疫苗开发似乎比较难哦.
为什么? 虫体太大, 特异性抗体和T细胞能不能搞定啊?
个人认为, 疾病的控制策略应该很多种,或者说,疾病的控制应该是采取综合措施和因病而异.
对付那些传播性能很高,也就是说,通过空气尘埃,飞鸟,人之间近距离接触,污染的用具和食品等进行的,病毒病,疫苗是很成功的. 一些细菌病也是如此.
但是,对于像疟疾,血吸虫等寄生虫病,我认为,环境治理措施应该有效得多.包扩其中间宿主的控制,和药物治疗. 这也是为什么疟疾和血吸虫在我国得以控制的原因.当然,高效疫苗开发也应该是我们努力的方向.
maoadai 和gofrom2004战友说的很好, 让我们学到了许多东西.
目前疫苗开发研究热潮中,似乎把寄生虫给忘记了.这是非常不明智的,国家应该投入一定的比例来做. 防患于未然,何况,我国好象血吸虫在洞庭湖又重现了哦!
期待更多虫子疫苗方面的研究讨论.
学习中............

作者: ALALA    时间: 2014-8-6 18:12


一篇评述:
Vaccines: Predicting immunity
Nature Reviews Immunology 9, 4 (January 2009) | doi:10.1038/nri2478
Two recent studies have used systems biology approaches to identify early gene 'signatures' induced in humans vaccinated with the attenuated yellow fever vaccine YF17D that correlate with, and in some cases predict, the subsequent adaptive immune response.
YF17D, which is one of the most effective vaccines generated so far, is thought to mediate long-lasting protection by inducing neutralizing antibodies, although cytotoxic T-cell responses might also be important. However, a detailed understanding of the early immune response that is induced by YF17D which leads to protection from yellow fever is lacking. The two studies described here used high-throughput technologies, combined with computational modelling in one study, to identify early gene signatures that were induced by YF17D vaccination.
Both studies analysed total peripheral-blood mononuclear cells from different cohorts of human volunteers (who had not been previously vaccinated with YF17D) at various time points following vaccination. Early (3 and 7 days post-vaccination) effects on gene expression were determined by transcriptional profiling and analysed using several bioinformatics approaches. Many of the genes that were regulated early are involved in the innate immune response, including genes that are associated with Toll-like receptor signalling, the interferon pathway, the antiviral response, the complement pathway and the inflammasome. By visualizing these gene networks, a group of transcription factors, including interferon-regulatory factor 7, signal transducer and activator of transcription 1 and ETS2, could be identified as key regulators of the early immune response to the YF17D vaccine. In addition, Gaucher et al. showed that YF17D triggers the proliferation and expansion of several immune-cell types (such as macrophages, dendritic cells, natural killer cells and lymphocytes). Together, these data highlight the broad range of innate immune effector mechanisms that are induced by YF17D vaccination.
Although this vaccine is highly effective, the magnitude of the CD8+ T-cell responses and antibody titres varied greatly between individuals, but Gaucher et al. found that the T-cell response was of broad epitope specificity and persistent. Querec et al. sought to determine gene signatures that would correlate with and predict the variations in the adaptive immune response; however, none of the genes that had been identified by their transcriptional profiling analyses significantly correlated with the magnitude of the adaptive immune response. Using additional bioinformatics approaches, the authors identified a gene signature that did correlate with the magnitude of antigen-specific CD8+ T-cell responses and antibody titres.
To evaluate the actual predictive capacity of this signature, they determined whether the gene signature could predict the magnitude of the CD8+ T-cell or B-cell response in individuals from a second YF17D vaccine trial. They found that several signatures for CD8+ T-cell responses from the first trial were predictive with up to 90% accuracy in the second trial and vice versa. EIF2AK4, which has an important role in the integrated stress response, was repeatedly represented in most of the predictive signatures that were generated, which suggests that this gene could have a central role in mediating the YF17D-induced CD8+ T-cell response. Consistent with this, YF17D triggered the integrated stress response in human cells in vitro. In addition, the authors identified a distinct early gene signature that included TNFRSF17 (a receptor for B-cell-activating factor) that predicted the neutralizing antibody titres as late as 90 days following vaccination.
So, these studies provide a detailed description of the transcriptional profile that is induced early after YF17D vaccination and highlight the complexity of the response that is required for the induction of long-lasting immune protection. In addition, the magnitude of a protective immune response to YF17D can be predicted early after vaccination using systems biology approaches. These approaches could help to identify early correlates of protection for multiple vaccine candidates and new mechanisms by which vaccines generate protective immune responses.

作者: ALALA    时间: 2014-8-6 18:16


Nature Reviews Immunology 9, 28-38 (January 2009) | doi:10.1038/nri2451
Harnessing invariant NKT cells in vaccination strategies
To optimize vaccination strategies, it is important to use protocols that can 'jump-start' immune responses by harnessing cells of the innate immune system to assist the expansion of antigen-specific B and T cells. In this Review, we discuss the evidence indicating that invariant natural killer T (iNKT) cells can positively modulate dendritic cells and B cells, and that their pharmacological activation in the presence of antigenic proteins can enhance antigen-specific B- and T-cell responses. In addition, we describe structural and kinetic analyses that assist in the design of optimal iNKT-cell agonists that could be used in the clinical setting as vaccine adjuvants.

作者: hyuu    时间: 2014-8-6 18:16


好贴,寄生虫和真菌疫苗需要多多研究,尤其是一些肉用动物必须用高毒的“三致”药物才能有效治疗的这些微生物疾病。

作者: idea2011    时间: 2014-8-6 18:17

从生产线上看疫苗开发:
我是兽药生产企业的研发着,每次看到关于基因疫苗,感觉无法真正在我们的车间里生产。
主要问题就是成本高。
目前有一种DNA免疫增强剂,是美国动物保健品公司研发主管推荐我们在佐剂开发中添加的成分,20kb左右,但如果大规模合成这个2mg左右需要2000左右人名币,折合到每头份疫苗中约1头猪7块钱,现在市场上疫苗几乎还没有7块1头份的呢。所以说根本无法实现。
另外个人意见:DNA 序列特异性高,这比病原的血清型还要复杂,所以说对疾病的预防特异性达不到要求。

作者: iii_ii    时间: 2014-8-6 18:18


亮助先生是善于思考的同志:病毒和机体的关系本身就是哲学问题,处处充满了辩证的思想的......
我的观点:
1:DNA疫苗和各种亚单位疫苗....都是骗人的!新型佐剂的研究...!哈哈!就像寻找“长生不老药”一样可笑!
2. 我们现有的病毒学与免疫学理论,也就是对病毒和机体的关系本身了解了那么一点点......,还等着免疫学的重大新理论!!!!?盲人摸象!耳朵是啥样你还没摸全呢!就喊着要发现“大象的新品种”!!!
3. 各种新型疫苗(多肽疫苗,载体疫苗,DNA疫苗等)至少在未来50年,甚至更长时间,将长期停留在理论研究或者实验室水平上!!!。
4. “绝对安全而又高效的疫苗”我认为在理论上是不存在的!要高效就不会安全!这是生命的基本法则!!
5. 疫苗的研发方向应是“全病原体活疫苗”!把我们的分子与基因工程技术用在全病原体活疫苗吧!专家们教授们!给我们的儿子剩些钱吧!去!去海选“全病原体活疫苗”吧!至于它为什么高效,留给我们的儿子去研究吧!
言辞过激了!为长话短说!

作者: ALALA    时间: 2014-8-6 18:18


Recent attempts for improved influenza vaccines.
Influenza virus’ high rate of mutation is a major obstacle in designing an effective, universal influenza vaccine. Every year, new strains of virus emerge and the seasonal vaccine must be freshly prepared using circulating strains. The WHO’s Global Influenza Surveillance Network monitor and inform governing authorities of the emerging influenza viruses so new vaccines can be produced before the influenza season starts. In addition to the need to prepare seasonal influenza vaccines annually, the imminent threat of a pandemic influenza, especially with the H5N1 avian strain, has facilitated research into universal means to control this mutative virus, using antibodies that can neutralize or a vaccine that can protect against different influenza strains.
Michael Deem and colleagues at Rice University (TX, USA) have used a novel computational method to predict the efficacy of influenza vaccines. Mutations in the virus genes were given numerical scores and the scientists could then estimate whether a vaccine may be effective against divergent viral strains.
“For seasonal influenza, we validated our model against observational data compiled by the World Health Organization’s Global Influenza Surveillance Network,” said Deem. “We also ran tests against bird flu data. We found that multiple-component bird flu vaccines appeared to be helpful in controlling the simultaneous multiple introduction of bird flu strains.”
“Oftentimes, bird flu seems to emerge with multiple strains, and something similar can happen with newly released or evolved strains of seasonal flu as well,” explained Deem. The scientists hope that their new computational approach can help predict the necessity and efficacy of a multiple-component vaccine should multiple influenza strains emerge at the same time.
Screening for antibodies that are able to neutralize divergent strains of influenza virus is another approach in tackling the virus’ high mutation rate. Such antibodies will be useful in passive immunization, as well as in designing new vaccines that can elicit antibodies with similar neutralizing ability. In a recent study published in Science online ahead of print, Ekiert et al. from the Scripps Research Institute (CA, USA) identified CR6261, a human antibody that could neutralize both H1N1 (responsible for the 1918 influenza pandemic) and H5N1 (fear to cause the next pandemic) viruses. The authors wrote: ‘CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1/HA2 [the viral hemagglutinin]. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.’
In another study published in the March issue of Nature Structural and Molecular Biology, Sui et al. from Harvard Medical School (MA, USA) screened an antibody phage-display library and identified ten antibodies that could neutralize all group 1 influenza viruses, including H1N1 and H5N1. The researchers were also able to demonstrate that each of these antibodies neutralized the virus ‘by inserting its heavy chain into a conserved pocket in the stem region [of the viral hemagglutinin], thus preventing membrane fusion.’ They appeared to work by the same mechanism, which was similar to that described by Ekiert et al. In summary, conserved regions in the stem section of influenza virus hemagglutinin may serve as a good antigen candidate for future vaccine design, and antibodies that bind these regions may be able to neutralize divergent viral strains, thus they may be used as therapeutics in an emergency where vaccines cannot be used.
Sources: Ekiert DC, Bhabha G, Elsliger MA et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924), 246–251 (2009); Sui J, Hwang WC, Perez S et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16(3), 265–273 (2009); Rice University, TX,

作者: ALALA    时间: 2014-8-6 18:18


Application of pharmacogenomics to vaccines
Pharmacogenomics
May 2009, Vol. 10, No. 5, Pages 837-852
内容提要
▪ The application of the science of pharmacogenomics and pharmacogenetics to vaccines has led to a new science of vaccinomics.
▪ Twin studies offer an ideal system for understanding the genetic contribution to variation in the immune response to vaccines, and for identification of SNPs.
▪ The activation and/or suppression of specific immune response pathway genes associated with response to vaccines provide a basis for the theory of the immune response gene network.
▪ HLA gene polymorphisms are important contributors to human immune responses to prophylactic vaccines.
▪ Genetic variants in immune response genes have important associations with immune responses to measles–mumps–rubella, influenza, HIV, hepatitis B vaccine and smallpox vaccines.
▪ A number of polymorphisms in SLAM, CD46, cytokine, cytokine receptor and TLR genes have been discovered that are associated with variations in both humoral and cellular immune responses to the measles–mumps–rubella vaccine.
▪ It may be feasible to design new personalized vaccines based on complex interactions of host genetic, environmental and other factors that control immune responses to vaccines.
▪ An emerging field associated with vaccinomics is the area of genetically determined vaccine-associated adverse events and atypical immune responses – collectively called adversomics.
▪ At the current time, cost is a major obstacle to vaccinomics and personalized vaccinology approach.
===============================
What is vaccinomics?
The development of the field of pharmacogenomics (associations of whole genomes and drug or vaccine response) and pharmacogenetics (associations of individual genes and drug or vaccine response) has provided both the science base and clinical outcomes that together increasingly allow for the practice of individualized drug therapy. The application of this same science when applied to vaccines we have labeled ‘vaccinomics’ [1]. Thus, just as we now recognize that a variety of drugs, such as antidepressant and antihypertensive medications, may require different dosing based on individual genetic differences and result in different side-effect profiles, resulting in variations in therapeutic effect based on genetically-based individual variations; we have now begun to recognize similar attributes in terms of vaccine indications, dosing, side effects and outcomes. As one clinician noted, ‘…vaccines licensed in the USA are safe and effective. However, not every vaccine is equally safe or equally effective in every person’ [2].
As discussed later in this paper, we have done extensive work identifying associations between immune response gene polymorphisms and variations in immune responses to several prophylactic live viral vaccines [3–13]. Such phenotype/genotype data, in combination with high throughput genetic sequencing and bioinformatics, we believe will accelerate the field of vaccinomics and personalized vaccinology. In turn, the growth of this area of inquiry will increasingly allow us to understand and predict immune responses to vaccines, adverse events to vaccines and accelerate new vaccine development. Such research is a logical extension of what physicians now do – tailor any intervention to the unique characteristics of the patient before them. For example, patients with renal failure or who are immunocompromised may get a hepatitis B antigen dose two- to four-times the usual dose in order to improve the chances of seroconversion and protection. Similarly, an HLA-extended haplotype that is associated with nonresponse to this vaccine has been defined [14]. Multiple repeat dosing may seroconvert such identified individuals [15]. Thus, such findings result in changes in clinical care, such as requiring higher doses, alternative vaccines, and accelerated or enhanced schedules. Vaccinomics will also chart new courses for novel vaccine development. It will drive novel scientific approaches and solutions to vaccine nonresponse, such as new vaccine adjuvants and peptide cocktail vaccines based on HLA supertype and other approaches.
How does vaccinomics inform vaccine development & vaccine science?
It is clear that the ability to respond to the threat of infectious disease depends on the ability of the host to mount an effective defense against an invading pathogen. However, for this to occur, a variety of biologic systems must be activated by the host, eventually resulting in the activation and secretion of cytokines, antibodies, chemokines and immune effector cells. In turn, for these events to take place, a variety of genes must be activated or suppressed and their products transcribed and their proteins translated, modified, expressed and secreted. In this regard, we have previously discussed the theory of the ‘immune response gene network’ whereby it is clear that the interactive and iterative activation and suppression of specific pathway genes must occur in a choreographed fashion in order for a coherent immune response to result after recognition of a pathogen [11]. Genes involved in virus binding and cell entry, antigen recognition, processing and presentation, immune effector cell function and immunoregulation are all necessary for a coordinated attack against an invading pathogen. Our work with the measles–mumps–rubella (MMR) vaccine, for example, has illustrated significant associations between class I and II HLA, cytokine, cytokine receptor, signaling lymphocyte activation molecule (SLAM) and CD46, and other immune response gene polymorphisms, humoral immune responses (IgG enzyme-linked immunosorbent assay [ELISA] and neutralizing antibody levels) and markers of cell-mediated immune responses (lymphoproliferative assays, cytokine secretion, enzyme-linked immunosorbent spot [ELISPOT] assays, and so on) [3,5,7–9,16–19]. In addition, we have advanced such work by expanding the scientific NIH data-sharing database to include microarray data, and more recently, transcriptomics data at increasingly remarkable levels of sensitivity [20].

作者: ALALA    时间: 2014-8-6 18:19

The next evolution in understanding such data will be in analyzing and better understanding such issues as gene family pathways, epigenetic modifications and complementation. For example, we have developed protocols whereby ex vivo infection of human peripheral blood mononuclear cell (PBMC) cultures and the application of mass spectrometry tools have allowed us to identify naturally processed and presented pathogen-derived peptides – the very entity responsible for pathogen-induced adaptive immune responses [21]. Coupled with a growing body of data regarding pathogen-derived peptide promiscuity and HLA supertypes, such data will lead to identification of peptides capable of stimulating humoral and recall immunity [21–23]. A repertoire of such peptides (peptide cocktail) may permit the design and development of new vaccines for particular subpopulations [24]. For example, certain polymorphisms in the SLAM (CDw150) receptor for live measles vaccine virus are associated with poor humoral immune responses [7]. Since both vaccine and wild-type measles virus strains infect host cells via the interaction of the measles virus hemagglutinin protein with the V-domain of the SLAM receptor, SNPs in the SLAM gene are significantly associated with variations in immune responses to measles vaccine. Microarray experiments demonstrate gene-expression patterns (13 upregulated and 206 downregulated genes) in PBMCs from children with acute measles and children in the convalescent phase, which were consistent with the prolonged alteration of lymphocyte responses to measles [25]. It may well be possible to design new vaccines for use in individuals who suffer from variant cell-based receptors for viral recognition and do not respond well to current vaccines. Investigators may develop new vaccine models that do not depend upon such receptors or develop new vaccines that effectively allow vaccine virus to bind to a range of receptor polymorphic areas [26,27].
The goal of pharmacogenomics and vaccinomics is to identify genetic variants that predict adverse responses to vaccines, predict aberrant immune responses, contribute to personalized therapy and that predict susceptibility to diseases and response to vaccines [28]. Vaccinomics may also be useful in the development and use of existing and novel vaccine adjuvants and stimulants. For example, specific polymorphisms of the TLR3 gene are associated with significantly diminished humoral and cell-mediated immune responses to the measles vaccine [8]. Understanding the mechanism by which such polymorphisms diminish innate and other immune responses may offer a critical insight into designing work around the limitations imposed by such polymorphisms – either by developing new adjuvants that utilize other receptors, or by the addition of stimulant molecules that can potentiate or augment the immune response.
Similarly, complement components are key factors of the innate and adaptive immune response against pathogens. Without a fully functioning complement system normal immune response, lymph node organization and B-cell maturation, differentiation, responsiveness and tolerance is adversely affected [29]. Products from the cleavage of complement or component proteins can bind to cell-surface receptors to influence inflammation [30], T-cell immunity [31] and B-cell response [32]. These receptors are known as regulators of complement activation (RCA) and are a family of common receptors present on most cells [33]. It has been demonstrated that any deficiencies in C4, C2 or C3 proteins can lead to a weakened antibody response to bacterial infections [34]. For example, targets for complement components C4b and C3b on both Neisseria meningitidis and Neisseria gonorrhoeae have been described [35]. Most genes of the complement system are polymorphic, with the C4 molecule having over 35 identified variants [36]. While it has been demonstrated that complement genes play a critical role in the immune response to influenza [37,38], rubella [39] and other viral infections, there have been no studies to date investigating how complement gene polymorphisms may affect immune response to viral infections and/or viral vaccines.
Another area of importance is genetically determined vaccine-associated adverse events, which we have called ‘adversomics’. Scarce data are available regarding the immunogenetics of adverse vaccine responses. Black et al. recognized differing and more severe adverse events to receipt of the measles vaccine in Amazon Basin Indians compared with other groups – suggesting a possible genetic contribution [40]. More recently, Vestergaard et al. demonstrated an association between receipt of the MMR vaccine and subsequent febrile reactions and febrile seizures [41], providing a logical genetic basis for increased susceptibility to adverse events to live viral vaccines. Very recently, debate has arisen over the hypothesis that live viral vaccines could in some fashion exacerbate pre-existing genetically-coded problems such as mitochondrial or metabolic defects, for example, inborn errors of amino acid and organic acid metabolism, lipid metabolism, carbohydrate metabolism and of purine and pyrimidine metabolism [2,42]. Mitochondrial disorders in particular are estimated to occur at an incidence of 1 in 4000–5000 births [43]. If knowledge of such disorders were to be identified as important in predicting vaccine-induced immune responses or adverse events, screening for such genetic defects or polymorphisms might become more commonplace. In an analogous manner, the routine screening for such disorders among all live children born in the USA, represents personalized and predictive medicine, particularly to the extent that findings of concern would result in different specific vaccine recommendations.

作者: ALALA    时间: 2014-8-6 18:19

Concerns over more severe vaccine-related side effects, such as neurotropic and viseotropic reactions to yellow fever vaccine, encephalitis-related reactions to smallpox vaccine, Guillain-Barré reactions temporally occurring with vaccination and others, warrant further investigation for the potential of identifying genetic predictors of risk [44–47]. With the availability of high-throughput sequencing and large patient databases that allow identification of serious adverse events related to immunization, such studies are increasingly feasible. Such studies would be further enhanced by reliable and stable funding mechanisms for broader population-based studies of adverse events for other commonly administered vaccines.
Specific examples of prophylactic vaccines
▪ Twin studies
Twin studies provide opportunities to explore genetic contribution to vaccine response and to identify specific gene polymorphisms. This benefit occurs for two reasons. First, a number of nongenetic factors may influence antibody levels (and cellular immune responses) following vaccination, including the presence of maternal antibodies [48], race [49], differences in vaccine storage, handling and administration [50,51], and concurrent illness at the time of vaccine administration [52–54]. However, twins who are raised together are highly likely to share these and other factors (such as exposure to viral diseases) that may influence measures of vaccine immunity. In addition, twins are also highly likely to be vaccinated at the same time with the same lot of vaccine, which has been stored and administered under the same conditions. They are also matched on age, exposure to older and younger siblings, and on overall family environment. Therefore, twin studies provide an ideal way to control for shared environmental factors. Second, monozygotic (MZ) twins share all of their genes, while dizygotic (DZ) twins share half their parents’ genes. Therefore, differences in immune responses within MZ twin pairs can be attributed to differential environmental exposures and chance variation, while differences in immune responses within DZ twins can be attributed to differential environmental exposures, chance variation and genetic differences.
Investigators have used twin studies to estimate the genetic and environmental contributions to a variety of different diseases, including determining the genetic contribution to variation in total immunoglobulin levels and specific IgG antibody levels to pneumococcal capsular polysaccharides [55,56]. Recent studies have observed a high heritability of 77% (95% CI: 63–85) for antibody response to hepatitis B vaccine in 207 Gambian twin pairs aged 5 months [57]. Heritabilities for antibody responses to oral polio, tetanus and diphtheria vaccines were 60% (95% CI: 43–73), 44% (95% CI: 16–70) and 49% (95% CI: 17–77), respectively [57]. In addition, significant heritability was also observed for IFN-γ and IL-13 cytokine immune responses to tetanus, pertussis and several Bacillus Calmette–Guérin (BCG) vaccine antigens, ranging between 39 and 65% [57]. Another study among 147 DZ and 43 MZ Gambian twin pairs showed that the IgG antibody response to Haemophilus influenzae type b (Hib) vaccine is highly heritable among Gambian infants. Heritability of antibody responses to Hib conjugate vaccine was estimated to be 51% (95% CI: 32–66), indicating a significant genetic contribution to the variation of antibody response to the polysaccharide antigen of Hib [58].
Since twin studies provide an ideal method for quantifying the magnitude of genetic contributions to the variability in vaccine-induced immunity, determining the proportion of variation attributable to specific genes in healthy individuals following live attenuated MMR vaccination was investigated. The Mayo Vaccine Research Group (MN, USA) conducted a twin study to determine the magnitude of genetic influence on variability in circulating antibody levels to measles, mumps and rubella viruses [59,60]. A total of 100 twin pairs (45 MZ and 55 DZ) residing in Minnesota were recruited and information regarding demographic characteristics, vaccine history and exposure to or occurrence of any vaccine-preventable diseases collected. Blood samples were collected from each child and viral-specific IgG antibody levels were quantified by ELISA. The genetic variance and heritability of the IgG levels were examined using analysis of variance techniques. It was found that the heritability was 88.5% for measles (95% one-sided CI: 52.4), 38.8% for mumps (95% one-sided CI: 1.6) and 45.7% for rubella (95% one-sided CI: 4.9). These data demonstrate that genetic influences play a substantial role in antibody levels following measles vaccination, and a somewhat lesser role in the antibody levels following mumps and rubella vaccination. Others have commented that ‘Knowledge that a trait of interest has high heritability can support a study that proposes to investigate the genetic determinants of that trait’ [61]. It is important to note that the unique genetic and environmental characteristics of different individuals and vaccines demand a clear understanding of the role of critical aspects of vaccine pharmacogenomics [11,62].
The pathways by which protective humoral and cellular immune responses develop to live viral vaccines is a multistep process: the vaccine virus (such as measles) must first be recognized by its cellular receptors (SLAM and CD46) and also activate toll-like receptors (TLRs) or other innate sensors, triggering innate immune responses. After antigen presentation by HLA molecules, cytokine and cytokine receptor gene activation occurs, along with signaling molecules, resulting in secretion of cytokines as intercellular messengers to stimulate Th1 and Th2 immune responses [63–65]. Individual variations within any of these relevant genes could effect gene transcription, regulation or expression, and thereby influence immune responses or the propensity to an adverse reaction to the vaccine antigen. Below we will give specific examples of genetic associations with immune responses to live viral vaccines.
▪ MMR vaccine
As discussed above, we have performed and reported a twins study of measles vaccine immunogenicity. This study demonstrated that antibody levels to measles vaccine have a very high heritability of 88.5% [59,60]. Informed by advances in basic immunology on the role of the HLA complex in immune recognition and response, a series of immunogenetic studies designed to answer questions on the role of HLA in vaccine immune responses was performed.
The HLA proteins play an essential role in generating an immune response against pathogens. Generally, the class I A, B and C alleles bind and present peptides to CD8+ T lymphocytes, while the class II DR, DQ and DP alleles bind and present peptides to CD4+ T cells. The peptide-binding clefts of the HLA molecules contain highly polymorphic clusters of amino acids that act to control or restrict the spectrum of peptides capable of being bound and presented by a given HLA molecule. A single HLA molecule is able to bind self- and pathogen-derived peptides that share common amino acid motifs [66,67]. Differences in HLA-binding affinities may result in decreased binding of specific pathogen-derived peptides and inefficient peptide presentation to T lymphocytes [68–70]. Inefficient peptide presentation may, in turn, result in decreased T-cell activation and cytolytic function, decreased cytokine production and decreased B-cell production of pathogen-specific antibodies.

作者: ALALA    时间: 2014-8-6 18:19

We have reported a number of findings in relation to measles, mumps and rubella vaccine antigens and HLA genetics [9,17,71–73]. Recent reviews of these population-based clinical studies have revealed a number of findings of interest. Specific class I and class II HLA alleles are associated with variations in antibody levels after a single dose of measles vaccine [3–5]. In particular, class II DRB1*03, DQA1*0201 and the class I B8, B13 and B44 alleles are associated with lower levels of measles antibodies in healthy schoolchildren. In the case of HLA homozygosity it was also demonstrated that overall lack of variation in the HLA alleles is associated with decreased measles-specific antibody levels following a single dose of vaccine, with increasing risks of vaccine nonresponse with increasing homozygosity [16]. The role of HLA molecules in vaccine-induced immune responses after two doses of MMR vaccine was also examined [6,9,17]. Little verification was found that either homozygosity at specific HLA loci or overall homozygosity had any disadvantage in terms of measles-specific cytokine immune responses, such as IFN-γ, IL-2, IL-4, IL-10 and IL-12p40, following two doses of measles vaccine, suggesting that at some level genetic restriction could be overcome by higher or repeated doses of vaccine [73]. In addition, associations between HLA haplotypes and HLA supertypes and MMR vaccine-specific humoral and cellular immune responses following two doses of MMR vaccine were investigated [23,74]. The haplotypes with the strongest evidence for association with lower measles-induced antibodies were DRB1*07–DQB1*02–DPB1*02 and DRB1*07–DQB1*03–DPB1*04. Haplotype A*26–Cw*12-B*38 was significantly associated with higher antibody levels and higher lymphocyte proliferation and response to the mumps vaccine [74]. Among our study subjects, the supertypes B44 and B58 were strongly associated with lower measles vaccine-specific antibody levels. In contrast, the most common B7 supertype was associated with higher measles vaccine antibody response. For the mumps vaccine, it was found that the HLA-DQB1*0303 allele was associated with lower mumps-specific antibody titers and the B62 supertype was suggestive of an association with mumps-specific higher lymphoproliferation after the MMR vaccine [9,23]. Further, alleles of the DRB1, DQA1 and DQB1 loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine [9]. It was also demonstrated that HLA-A (*2402 and *6801) alleles were associated with lower vaccine-induced IFN-γ secretion levels in response to rubella virus antigens [19]. Associations were further observed between measles (IFN-γ and IL-4) and rubella (IFN-γ and IL-10) specific cytokine responses and class I and class II HLA gene polymorphisms [19,75–77]. Class I HLA-A (*0101, *3101), HLA-C (*0303, *0501), and class II HLA-DRB1 (*0301, *1501) and HLA-DQB1 (*0201, *0303 and *0602) alleles were significantly associated with variations in measles-virus-induced in vitro IFN-γ secretion [75,76]. These studies demonstrated that both humoral (antibody) and cellular (lymphoproliferation and secreted cytokines) immune responses to MMR vaccine are clearly influenced by polymorphisms of the HLA genes.
HLA gene polymorphisms may also be related to variations in cytokine production following measles immunization through variations in T-cell activation; however, variation in the cytokine genes themselves may also directly affect cytokine secretion after antigen stimulation [10]. It is also possible that other immune response genes or other currently unknown genes may also influence vaccine immunity more strongly than the HLA genes. In this regard, polymorphisms in cytokine and cytokine receptor genes may also contribute to variations in vaccine immune response [78]. SNPs that are associated with differences in cytokine secretion levels could also influence vaccine-induced immune responses [18]. For example, the presence of minor allele T for intronic SNP rs2201584 within the IL12RB2 gene and the presence of minor allele A of the rs373889 within the IL12RB1 gene were strongly associated with an allele dose-related decrease in antibody titer and lymphoproliferation, respectively, after two doses of mumps viral vaccine [9]. More recent preliminary data demonstrate that specific SNPs in the IL10 and IL12RB2 genes are associated with low antibody and low cell-mediated immune responses to the measles vaccine, while SNPs in the IL2 gene are associated with high antibody and cellular immune responses to measles [18]. The same IL2 promoter SNP (rs2069762) identified in our study was also found to be associated with the responder phenotype following hepatitis B virus (HBV) vaccination [79]. Significant associations were also found between IL4R gene polymorphisms and levels of measles-specific secreted IL-4 (major alleles for four SNPs were associated with lower levels of IL-4) [18], indicating that cytokine and cytokine receptor gene polymorphisms may be significant factors in the development of vaccine immunity.
We also examined gene polymorphisms in the two known genes that code for the measles virus receptors – SLAM and membrane cofactor protein – CD46. Both SLAM and CD46 are known to play a role in measles virus binding and entry into the host cell, as well as in cell tropism and pathogenesis. Our study demonstrates that increased representation of minor alleles for rs3796504 and rs164288 in the SLAM gene were associated with a significant allele dose-related decrease in measles-specific antibodies [7]. The SNP rs3796504 leads to an amino acid change of threonine to proline at position 333 of the SLAM gene, and may change the conformation of the SLAM receptor, making it unsuitable for binding to the measles virus hemagglutinin protein. Within the CD46 gene, the minor allele C for intronic SNP (rs11118580) was associated with an allele-dose related decrease in measles-specific antibodies [7]. Although the mechanism is unclear, intronic SNP rs11118580 may also play a critical role in the regulation of gene transcription. Thus, variations in measles vaccine-induced antibody levels may be influenced by polymorphisms in the genes for the SLAM and CD46 measles virus receptors.
Discovery of genetic variation (e.g., immunogenetic profiling) in a population is important for understanding its role in vaccine-induced immunity [26]. In this regard, polymorphisms of the TLR genes involved in innate immune responses have also been demonstrated to influence the susceptibility to infection and immune responses to pathogens. For example, Heer et al. have shown that TLR signaling is not required for anti-influenza effector T-cell responses, but through both direct and indirect ways it orchestrates anti-influenza B-cell responses [80]. It has been reported that laboratory adapted and vaccine strains of measles virus, including the Edmonston vaccine strain, induce TLR3 in human dendritic cells, which may be associated with protective immunity against measles via enhanced IFN-β secretion [81]. This suggests that measles virus-induced expression of TLR3 may be a sign of augmented IFN production that plays an important role in host defense to viral infection. Specific SNPs in the coding and regulatory regions of the TLR3 (and associated intracellular signaling molecule MyD88) were also associated with variations in antibody and cellular immune responses to measles vaccine, suggesting that TLR signaling may be required for antimeasles T- and B-cell immune responses [8,10]. However, more work in this area is required in order to understand how immune responses to vaccines can be impaired by SNPs within the genes encoding TLRs.

作者: ALALA    时间: 2014-8-6 18:20

▪ Influenza vaccine
Influenza is a single-stranded RNA virus that causes substantial morbidity and mortality. Influenza vaccines prevent disease in 80% of healthy subjects [82] Therefore, it is important to investigate the effect of immune response gene polymorphisms on humoral (and cellular) immune responses following influenza immunization [83]. While a variety of genes and gene pathways are involved in whole influenza virus immunity, it is essential to understand gene polymophisms that may be involved with generating an immune response to the influenza hemagglutinin (H) and neuraminidase (N) transmembrane glycoproteins, as these proteins form the sole influenza virus-derived components of inactivated influenza vaccine. Serum antibody titers, measured by a hemagglutination inhibition assay, are believed to be a reliable correlate of immunity to influenza viruses [84]. Associations between HLA gene polymorphisms and influenza A virus H1- and H3-specific hemagglutination inhibition antibody titers in healthy subjects who received trivalent influenza vaccine, containing A/H1N1 New Caledonia/20/99, A/H3N2 California/7/2004 and B/Shanghai/361/2002 influenza virus antigens were examined. HLA-A*1101 (p = 0.0001) and A*6801 (p = 0.09) alleles (global p-value for HLA-A locus 0.007) were associated with higher median levels of influenza H1 vaccine-induced antibodies [12]. Gelder et al. demonstrated an increased frequency of HLA-DRB1*0701 and a decreased frequency of HLA-DQB1*0603–9/14 in individuals who were nonresponders to the influenza subunit vaccine [85]. Significant associations between both H1- and H3-specific antibody immune responses and polymorphisms of cytokine and cytokine receptor genes (such as IL1R1, IL2RA, IL6, IL10RA, IL12B and other genes) were also identified, suggesting that SNPs present in HLA, cytokine and cytokine receptor genes may influence humoral responseMoon following seasonal influenza vaccination [12]. Further examination of the role of immune response gene polymorphisms and variations in influenza vaccine-induced immunity is warranted, particularly given the public health impact of both seasonal and pandemic influenza.
▪ HIV vaccine
Variations within the host’s genome may contribute substantially to the individual immune response to vaccination and susceptibility to infectious diseases. For example, evidence demonstrates that class I HLA-B*35 and B*08 alleles are associated with faster HIV type 1 (HIV-1) disease progression, and homozygosity at class I loci confers a significant risk of accelerated infection [86,87]. A study of canarypox vector-based HIV (vCP1433) vaccine (ALVAC)-HIV-1 recombinant canarypox vaccines showed that the HLA-B*27 and B*57 (the two alleles best known for an association with slower disease progression) were associated with earlier and positive CD8+ cytotoxic T lymphocyte responses to Gag and Env viral proteins [88]. However, homozygosity at class I loci, although conferring an unfavorable prognosis following natural HIV-1 infection, showed no such disadvantage for ALVAC-HIV-1 vaccine response [88]. For class II, associations with the DRB1*1300–DQB1*0603 haplotype and transporter gene products (TAP2 Ala665) and progression of HIV-1 infection have been also reported [89]. There appears to be a strong association between polymorphisms in the CCR5 chemokine receptor gene, located on the short arm of chromosome 3 and HIV-1 infection [90]. Caucasian individuals homozygous for a deletion of CCR5 (CCR5-Δ32), which encodes the cell entry co-receptor for HIV, appear to be at lower risk of acquiring HIV/AIDS [91]. Likewise, genetic studies of HIV demonstrate that the presence of the most frequent TLR8 polymorphism, TLR8 A1G (rs3764880), confers a significantly protective effect against disease progression [92]. Recently, de la Torre et al. demonstrated the contribution of five polymorphisms in the vitamin D receptor (VDR) gene to HIV-1 susceptibility among Spanish HIV-infected patients [93]. Specifically, haplotypes for VDR (SNPs rs11568820, rs4516035, rs10735810, rs1544410 and rs17878969) polymorphisms revealed important associations with protection against HIV-1 infection (OR: 0.4; 95% CI: 0.22–0.72; p = 0.0025).
▪ HBV vaccine
Hepatitis B vaccination of twin pairs is a valuable model with which to study the importance of host-genetic factors for the immune response to HBV antigens. The vaccine licensed throughout much of the world consists of recombinant hepatitis B surface antigen (HBsAg) and alum and induces protective antibodies (>10 IU/ml) in 95% of vaccinees following three doses. Hohler et al. studied 96 DZ and 95 MZ twin pairs and demonstrated that genetic factors have a significant effect on the immune response to the HBsAg vaccination [94]. In this study more than 60% of the observed variability in anti-HBsAg immune responses was attributed to genetic factors. The heritability of the HBsAg vaccine response accounted for by the HLA-DRB1 locus (such as DRB1*01, DRB1*11 and DRB1*15) was estimated to be 0.25, leaving the remaining heritability of 0.36 to other gene loci, suggesting that approximately 40% of the genetic contribution to HBsAg response is affected by HLA genes and approximately 60% by non-HLA genes [94]. This study suggests that while genes encoded within the HLA complex are important for the immune response to HBsAg, more than half the heritability is determined outside of this complex, with strong evidence that other immune response genes (complement factor C4A, IL2, IL4 and IL12Black Eye are also important determinants of nonresponsiveness to HBV vaccination [95,79]. In addition, increased antibody levels and lymphoproliferative immune responses to HBV vaccination were found to be influenced by polymorphisms within the IL1β gene [96].
Several HLA association studies have demonstrated that the DRB1*03 and/or DRB1*07 alleles confer a higher possibility of HBV vaccine failure [97,98]. Further, analyses of genotyping data from 164 North American adolescents vaccinated with recombinant HBV vaccine demonstrated that the HLA-DRB1*07 allele (relative odds [RO]: 5.18; p < 0.0001) was associated with nonresponse to full-dose vaccination [79]. However, when HBsAg-specific T-cell responses following HBsAg vaccination were compared ex vivo in 24 MZ and three DZ twin pairs, it appeared that the DRB1 alleles associated with vaccine failure (such as DRB1*0301 and *0701), were able to competently present HBsAg-derived peptides [99]. This argues that HLA-DRB1 allelic associations with HBV-specific immune response are not caused by differences in peptide binding or by a change in the ELISPOT Th1 (IFN-γ)/Th2 (IL-10) profile. The authors suggested that the defect in nonresponse to the HBV vaccine may be on the side of the T-helper cells and not on the side of the antigen-presenting cells [99].

作者: ALALA    时间: 2014-8-6 18:20

▪ Smallpox vaccine
Immunity to smallpox is an important issue for public health and vaccine development. In this regard, genetics play a critical role in the host immune response variation to smallpox vaccination within a population. The variability of humoral and cellular immune responses modulated by HLA and other genes is a significant factor in the development of a protective effect of smallpox vaccine (or live vaccinia virus). We tested whether associations exist between individual HLA alleles and vaccinia virus-specific humoral (neutralizing antibody) and cellular (IFN-γ-ELISPOT) responses in a group of healthy individuals (n = 1076; age: 18–40 years) who received one dose of smallpox vaccine (Dryvax™Wink. Significant associations were found between class II HLA-DQB1*0302 (p = 0.003) and DQB1*0604 (p = 0.03) alleles and higher vaccinia-induced neutralizing antibody levels (global p-value 0.01). A striking finding was an association of several class I HLA alleles with vaccinia-specific cellular responses. The global tests revealed associations between vaccinia-induced IFN-γ responses and HLA-B and -C loci (p < 0.001 and 0.03, respectively). Specifically, HLA-B*1501 (p = 0.006), B*3508 (p = 0.02), B*4901 (p = 0.04), B*5701 (p = 0.04), B*5802 (p = 0.05), C*0303 (p = 0.01) and C*0704 (p = 0.02) alleles were significantly associated with higher cellular responses to vaccinia virus. In contrast, HLA-B*3701 (p = 0.03), B*4001 (p = 0.03), B*5301 (p = 0.04), B*5601 (p = 0.03), C*0102 (p = 0.03), C*0702 (p = 0.04) and C*0801 (p = 0.01) alleles were significantly associated with lower IFN-γ responses to the smallpox vaccine [100]. These preliminary data suggest that both humoral and cellular immune responses to smallpox vaccine are, in part, genetically restricted by HLA genes.
Associations between smallpox vaccine-induced immunity and SNPs in cytokine and cytokine receptor genes were also studied. A variety of statistically significant associations between SNPs in the cytokine and cytokine receptor genes, in some cases associated with an allele–dose relationship, were found. For example, the minor variant for rs1035130 in the IL18R1 gene was associated with higher (p = 0.0002) vaccinia-specific antibody titers, while the heterozygous variant for rs2230052 in the IL12A gene was associated with lower levels of neutralizing antibodies (p = 0.03). The minor allele of rs2229113 in the IL10RA gene was found to be associated with a dose-related increase in IFN-γ responses (p = 0.03). Furthermore, two SNPs (rs1495963 and rs3024679) in the IL4R gene were associated with a dose-related decrease in IFN-γ production (p ≤ 0.05) [101]. These preliminary data suggest that SNPs in cytokine/cytokine receptor genes may influence immune response following smallpox vaccine. Other genes in the region may also contribute to the genetic control of this immune response. Our group is currently conducting extensive genome-wide association studies of immune responses to the smallpox vaccine.
Severe complications due to the smallpox (live vaccinia virus) vaccine have been reported [102]. The licensed vaccinia vaccine against smallpox (Dryvax) is associated with rare severe side effects, including encephalitis and myopericarditis [47,103]. Common adverse events, such as fever after vaccination, have been observed in 13–15% of newly vaccinated individuals [104,105]. Stanley et al. examined associations between the development of fever (≥37.7°C) and SNPs in 19 candidate genes among 346 individuals assessed for clinical responses to smallpox vaccine [105]. Fever following smallpox vaccination was found to be associated with specific haplotypes in the IL1 gene complex on chromosome 2 and with haplotypes within the IL18 gene on chromosome 11. A specific haplotype in the IL4 gene was significant for reduced risk for the development of fever after smallpox vaccination among vaccinia-naive subjects [105].
Recent papers have confirmed the association between receipt of the Dryvax vaccine and the development of myopericarditis [47,103,106]. It would be clinically important to determine if the individuals who developed myopericarditis after smallpox vaccination carry the IL1, IL18 or other haplotypes. It is conceivable that IL1, IL4 or IL18 gene polymorphisms may also be influencing the development of more common adverse events, such as fever and febrile seizures, after MMR immunization in children [41,107]. Further exploration of the role of specific gene polymorphisms in adverse reactions to vaccines is crucial to our understanding of immune responses to vaccines and to preventing serious adverse events. We are confident that similar immunogenetic work on other vaccines (such as anthrax, yellow fever, avian influenza and so on) will be pursued in the near future.
The above data illustrate the clinical utility in regards to vaccinomics information. If we understood that a polymorphism in the TLR ‘x’ gene led to poor or absent immune response, and we knew the prevalence of that polymorphism, perhaps we could design a specific adjuvant that could overcome the genetic defect coded for by that particular polymorphism and direct the immune response in a favorable manner. For example, CpG oligonucleotide, which stimulates TLR9, was used as an adjuvant with the HBV vaccine to activate innate immune responses to the standard alum formulation of HBV vaccine in healthy adults [108]. Vandenbroeck et al. state that ‘alterations in the expression levels of cytokines typically accompany aberrant immune activation … and demonstrate that cytokine gene association studies (of polymorphisms) are instrumental in identifying these disease states … such findings will ultimately lead to novel therapeutic strategies’ [109]. Large-scale population-based immunogenetic studies will further inform us regarding molecular mechanisms of protective vaccine immunity and provide important clues in the development of novel vaccines. The data discussed above from numerous human studies demonstrate the genetic basis for interindividual variation in immune responses to viral vaccines in genetically heterozygous populations.
What’s next? The developing field of personalized vaccinology
In many ways the era of personalized vaccines has already begun [110]. For example, the rationale behind and utilization of personalized vaccinology in cancer vaccines is increasingly clear and a benchmark in this regard [111,112]. In particular, in the field of cancer vaccines, much thought and progress has been demonstrated with the concept of personalized peptide vaccines [112].
Of particular interest to the personalized peptide vaccines concept is the peptide-based vaccine approach of identification of specific naturally processed pathogen-derived antigenic peptides. Targeting pathogenic T lymphocytes via vaccines consisting of synthetic peptides representing T- and B-cell epitopes is an interesting tactic since peptide-based approaches offer multiple advantages over whole-protein immunization strategies, including ease of manufacture, lower cost and the lack of a requirement for maintaining a cold chain [113–115]. Furthermore, identifying immunogenic peptides that would be restricted by numerous HLA alleles (promiscuous peptides) is one of the critical aspects to designing successful peptide-based vaccines that are useful among populations.

作者: ALALA    时间: 2014-8-6 18:21

An increasing number of articles, editorials and scientific efforts are being directed toward personalized medicine [116–118]. These efforts will affect everything in medicine, and vaccines are no exception [110,111]. At a minimum, we predict that the role of genomics in the field of vaccinology will serve to elucidate new mechanisms and biologic pathways in understanding vaccine-induced immune responses and adverse responses, as well as provide new insights into vaccine development [119]. With high-throughput, low-cost genetic sequencing, large-scale phenotype/genotype databases, and bioinformatics; personalized vaccinology at the subpopulation and the individual level will occur. Of most value early in the development of this field will be associations with major or even dominant impacts (e.g., the SNP or allele that imparts a clinically impactful high relative risk ratio for poor response or adverse effect, or conversely protection from adverse events [120,121]. Such work will provide studies useful in clinical decision-making at the individual level. As sophistication increases, the ability to detect meaningful associations through the contributions of multiple genes will be discernible and potentially clinically useful. Finally, the ability to understand and predict the effect of the presence/absence and interactions of the entire genome or heritable non-DNA encoded differences (epigenetics, complementation and so on) may prove the most useful in understanding an individual patient’s benefit or risk in receiving a specific vaccine [122,123]. In such a scenario, the finding of a particular SNP that confers a very high risk of a major adverse event to a vaccine, may be outweighed or mitigated by the simultaneous finding of other specific SNPs that confer protection against such a side effect. In this manner, the totality of the genetic risk or protective effects could be assessed and integrated with other aspects of a patient’s personalized profile in regards to receiving a vaccine. Of course, to be useful we again caution that determining such a genetic profile will need to be inexpensive, easy to interpret and easy for physicians to understand and synthesize as clinical data. Thus, we see the following broad steps as necessary for the development of personalized vaccinology. If carried out such steps are likely to rapidly accelerate advances in the science and improve our ability to advise our patients on an individual (as opposed to a population level) level [124]. Without a coordinated approach, advances in the science are likely to be slow, uneven, disjointed, and less predictable and useful. ▪ Better designed gene-association studies are critical to advancing the science. Much has been written regarding this, but briefly such studies should be powered to detect scientifically and clinically meaningful associations [125–131];
▪ Studies should examine clinically meaningful end points. Studies designed to detect risks of vaccinia-associated encephalopathy are more important than studies defining the risk of transient, low grade and spontaneously resolving local or systemic side effects such as fever;
▪ Studies should be designed to maximize the amount of genetic information derived. Initial studies of a small number of gene candidates are likely to be less promising than either genome-wide association studies or large candidate gene set studies for example, but may be appropriate as initial exploratory studies;
▪ Once initial genotype:phenotype association studies are completed and candidate SNPs or alleles identified, follow-up validation studies are critical to confirming true associations and to determining if such associations are also found in other ethnic/racial groups;
▪ The costs for such studies are currently high. Because of this, we applaud the NIH’s efforts at directing funding toward such studies and in developing public databases that will allow other investigators access to study results and protocols so that results can be duplicated in other settings. It would be helpful, if possible, to develop biobanks of DNA material under study protocols so that studies could later be performed of vaccine immune response genotype:phenotype associations in as expeditious and inexpensive a manner as possible. By analogy, we need a ‘Framingham study’ [132] approach in order to develop clinically meaningful information;
▪ We must develop genetic tests that are reliable and reproducible, of low cost, for use in clinical settings, rapid, and are accompanied by sophisticated analytic tools in bioinformatics, informed by increasingly sophisticated understanding of genetics, immunology and immunogenetics.
Conclusion
The field of vaccinomics, adversomics and personalized vaccinology represents the evolution of new fields of study with new scientific possibilities informed by new paradigms and discoveries in immunology, genetics and bioinformatics. Growth in this field will be driven not only by scientific reasons, but also by consumer demands for increasingly safe and risk-free medical treatment, prevention and the desire to understand and prevent serious and severe vaccine adverse events. In turn, we believe that vaccinomics and an increasingly personalized vaccine approach will lead to new and better directed vaccine development – including the development of niche vaccines for those persons who are susceptible to serious or chronic outcomes from a given infectious disease and who are unlikely to, or have not, responded with protective immune responses to standard vaccines.
The finding that approximately 90% of the variation in measles vaccine immune response is explainable genetically provides but one insight into the importance of the field of vaccinomics. Understanding and defining associations between important immune response gene polymorphisms and subsequent immune response can aid in not only designing new vaccines, but also in developing new concepts that lead to a better understanding of viral vaccine-induced immune response variability in all human vaccines. In addition, such understandings may well allow us to predict who will not respond to a vaccine (and hence shouldn’t receive the vaccine) or who is likely to suffer a serious adverse effect from a given vaccine. Thus, the broader development of vaccinomics data can be used to make individualized decisions regarding vaccine practice.
Nonetheless, as we have previously pointed out, difficulties remain in the study and application of the immunogenetics and immunogenomics of vaccine-induced immune responses [11]. First and foremost, the science base needed is still developing. We have yet to identify genotype:phenotype associations that would reliably call for variations in vaccinations (e.g., one more or one less dose, higher or lower concentration, or other changes in schedule). In addition, for the most part we do not yet have alternative vaccines to use to address poor immunogenetic responses (e.g., peptide cocktails and cytokine adjuvanted vaccines). The complexity and extensive polymorphic nature of immune response genes will require improved and increasingly powerful bioinformatic approaches in order to inexpensively acquire, display and understand complex genetic information. Further complexity results from issues of multigenic and gene–gene interactions and response effects such as complementation and heritable epigenetic modifications. Once initial data are available, validation studies in broader and more diverse subpopulations will need to be done in order to better understand the significance of gene-specific polymorphisms and to sort true-positive from spurious false-positive associations [133]. A recent editorial succinctly states that ‘use of genetic risk information to guide intervention must be justified by data demonstrating improved outcomes, reduced costs, or both’ [117]. We would endorse such a statement.

作者: ALALA    时间: 2014-8-6 18:21

Second, to proceed with a program of personalized vaccines, the economics of the genotype:phenotype associations and the alternative interventions would need to lend themselves favorably to adjust vaccination. Vaccination succeeds currently as a population-level public health measure because it is cost-effective and that cost–effectiveness is driven by the universal application of a one-dose-fits-all model. We would need a situation with personalized vaccines that similarly saved costs. To illustrate, imagine a vaccine usually given in three doses at a cost of US$100 a dose. Let us assume a genetic association with complete penetrance that would permit us to give only two doses to a subgroup of individuals to get the same level of protection. With two doses, we would save US$100 for each of those individuals. Assume the genetic association occurs in the population at a rate of 10%. Identification of such individuals requires testing all in the population. As long as the test costs less than US$10 an individual, the new program would break even. For the program to save money, the test would need to be cheaper. To save an average of US$5, the test would need to cost only US$5. Third, such testing in practice would need a high diagnostic accuracy in order to base clinical decisions on the result.
In general, while substantial difficulties need to be solved, we nonetheless believe that the vaccinomics era of personalized predictive vaccinology [11,110] is coming and that this will eventually allow clinicians to predict the likelihood of a significant adverse event to a specific vaccine [105], develop novel vaccines in a directed, nonempiric manner, predict the necessity for a given vaccine as well as the dose and number of doses of a given vaccine needed to produce the desired immunologic outcome, and identify approaches to vaccination for individuals and groups (based on age, gender, race and other) based on genetic predilections to vaccine response and reactivity. As stated by one investigator ‘just as pharmacogenetics has suggested ways of designing drugs to minimize population variability, understanding mechanisms of immunogenetic variation may lead to new vaccines designed specifically to minimize immunogenetically based vaccine failure’ [134].
At the current time, a major barrier to vaccinomics and personalized vaccinology remains the cost. For the widespread application of personalized vaccinology, much data remains to be developed, genetic sequencing costs must be inexpensive and rapidly obtained with high-throughput sequencers, and increasingly more sophisticated and less labor-intensive bioinformatic approaches will need to be developed and validated. All these issues continue to experience substantial scientific and public interest, with regular new discoveries. Hence we believe that the future of vaccinology is bright indeed, and the era of empiric vaccine development, and a strict one-size-fits-all public health approach to vaccine delivery will diminish, with adoption instead of a philosophy of the best vaccine solution for each individual or subgroup of individuals. How fast and whether public health paradigms of vaccination against infectious diseases will evolve is unknown, but critical to the public’s health, particularly in an era of consumer concern over safety, is the growing realization in healthcare policy that prevention is cheaper than treatment, and ultimately this will successfully drive advances in vaccine sciences to the benefit of all. In this regard, comprehensive and stable funding for childhood and adult immunization programs is critical to protecting the citizenry and national security.
Future perspective
Associations between HLA and other immune response gene polymorphisms, as well as innate and adaptive immune responses to vaccines are presently the best illustration of vaccine pharmacogenomics and pharmacogenetics (collectively called vaccinomics). To date, a number of immune response gene polymorphisms have been described that are associated with variations in vaccine-induced immune responses in genetically heterogeneous populations. This information, in combination with individual high-throughput genetic sequencing and bioinformatics will accelerate the field of vaccinomics and individualized vaccinology. Genetic sequencing approaches are critical for recognizing regulatory components of genes that are important in understanding immune responses following vaccination. Analysis of potential transcriptomic biomarkers for vaccine immune responses is another important technique informing the development of the next generation of prophylactic vaccines. Epigenetic aspects of heritable changes in gene-expression patterns in the absence of DNA sequence modifications of vaccine-related immune response genes will also be defined. Over the next decade, the role of immunogenetics relevant to personalized vaccines will also be further developed. We believe that the future of personalized medicine is such that with the appropriate enabling technology, one will be able to predict the likelihood of vaccine response, of numbers of doses need to achieve protection and the likelihood of serious adverse events due to vaccination. At the same time, additional immune response genes that influence variations in vaccine response will also be discovered, providing strategies for new immunotherapy approaches, novel vaccines and vaccine adjuvants. Prospective vaccine population-based studies should center on comprehensive genetic sequencing and epigenetic (DNA methylation, histone modifications) studies and on the mechanisms by which genetic polymorphisms and/or epigenetic modifications regulate gene expression and influence immune responses to vaccine antigens

作者: ALALA    时间: 2014-8-6 18:22

References:
1 . Poland‌ GA: Pharmacology, vaccinomics and the 2nd golden age of vaccinology. Clin. Pharmacol. Ther.82,623–626 (2007).
▪▪ Recent review of the field of vaccinomics.
[CrossRef] [Medline]
2 . Brady‌ MT: Immunization recommendations for children with metabolic disorders: more data would help. Pediatrics118,810–813 (2006). [CrossRef] [Medline]
3 . Poland‌ GA, Ovsyannikova IG, Jacobson RM et al.: Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine20,430–438 (2001). [CrossRef] [Medline]
4 . Jacobson‌ RM, Poland GA, Vierkant RA et al.: The association of class I HLA alleles and antibody levels following a single dose of measles vaccine. Hum. Immunol.64,103–109 (2003). [CrossRef] [Medline]
5 . Ovsyannikova‌ IG, Jacobson RM, Vierkant RA et al.: Associations between human leukocyte antigen (HLA ) alleles and very high levels of measles antibody following vaccination. Vaccine22,1914–1920 (2004). [CrossRef] [Medline]
6 . Ovsyannikova‌ IG, Jacobson RM, Vierkant RA et al.: The contribution of HLA class I antigens in immune status following two doses of rubella vaccination. Hum. Immunol.65,1506–1515 (2004). [CrossRef] [Medline]
7 . Dhiman‌ N, Cunningham JM, Jacobson RM et al.: Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J. Allergy Clin. Immunol.120,666–672 (2007). [CrossRef] [Medline]
8 . Dhiman‌ N, Ovsyannikova IG, Vierkant RA et al.: Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine26,1731–1736 (2008). [CrossRef] [Medline]
9 . Ovsyannikova‌ IG, Jacobson RM, Dhiman N et al.: Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics121,E1091–E1099 (2008). [CrossRef] [Medline]
10 . Poland‌ GA, Ovsyannikova IG, Jacobson RM: Vaccine immunogenetics: bedside to bench to population. Vaccine26,6183–6188 (2008).
▪▪ Review of vaccine immunogenetics and the immune response network theory.
[CrossRef] [Medline]
11 . Poland‌ GA, Ovsyannikova IG, Jacobson RM, Smith DI: Heterogeneity in vaccine immune response: The role of immunogenetics and the emerging field of vaccinomics. Clin. Pharmacol. Ther.82,653–664 (2007).
▪▪ Comprehensive overview of the field of vaccinomics and the role of immunogenetics in understanding the mechanisms of heterogeneity in immune responses to vaccines.
[CrossRef] [Medline]
12 . Poland‌ GA, Ovsyannikova IG, Jacobson RM: Immunogenetics of seasonal influenza vaccine response. Vaccine26(Suppl. 4),D35–D40 (2008). [CrossRef] [Medline]
13 . Poland‌ GA, Ovsyannikova IG, Jacobson RM: Genetics and immune response to vaccines. In: Genetic Susceptibility to Infectious Diseases. Kaslow RA, McNicholl JM, Hill AVS (Eds). Oxford University Press, NY, USA, 414–429 (2008).
14 . Kruskall‌ MS: The major histocompatibility complex: The value of extended haplotypes in the analysis of associated immune diseases and disorders. Yale J. Biol. Med.63,477–486 (1990). [Medline]
15 . Poland‌ GA: Hepatitis B immunization in health care workers: dealing with vaccine nonresponse. Am. J. Prev. Med.15,73–77 (1998). [CrossRef] [Medline]
16 . St Sauver‌ JL, Ovsyannikova IG, Jacobson RM et al.: Associations between human leukocyte antigen homozygosity and antibody levels to measles vaccine. J. Infect. Dis.185,1545–1549 (2002). [CrossRef] [Medline]
17 . Ovsyannikova‌ IG, Jacobson RM, Vierkant RA et al.: Human leukocyte antigen class II alleles and rubella-specific humoral and cell-mediated immunity following measles-mumps-rubella-II vaccination. J. Infect. Dis.191,515–519 (2005). [CrossRef] [Medline]
18 . Dhiman‌ N, Ovsyannikova IG, Cunningham JM et al.: Associations between measles vaccine immunity and single nucleotide polymorphisms in cytokine and cytokine receptor genes. J. Infect. Dis.195,21–29 (2007). [CrossRef] [Medline]
19 . Ovsyannikova‌ IG, Jacobson RM, Ryan JE et al.: Relationship between HLA polymorphisms and γ interferon and interleukin-10 cytokine production in healthy individuals after rubella vaccination. Clin. Vaccine Immunol.14,115–122 (2007). [CrossRef]

作者: ALALA    时间: 2014-8-6 18:24

20 . Dhiman‌ N, Ovsyannikova IG, Oberg AL et al.: Immune activation at effector and gene expression levels after measles vaccination in healthy individuals: A pilot study. Hum. Immunol.66,1125–1136 (2005). [CrossRef] [Medline]
21 . Ovsyannikova‌ IG, Johnson KL, Bergen HR III, Poland GA: Mass spectrometry and peptide-based vaccine development. Clin. Pharmacol. Ther.82,644–652 (2007). [CrossRef] [Medline]
22 . Ovsyannikova‌ IG, Johnson KL, Muddiman DC, Vierkant RA, Poland GA: Identification and characterization of novel, naturally processed measles virus class II HLA-DRB1 peptides. J. Virol.78,42–51 (2004). [CrossRef] [Medline]
23 . Ovsyannikova‌ IG, Jacobson RM, Vierkant RA, Pankratz VS, Poland GA: HLA supertypes and immune responses to measles–mumps–rubella viral vaccine: findings and implications for vaccine design. Vaccine25,3090–3100 (2007). [CrossRef] [Medline]
24 . Ota‌ MO, Ndhlovu Z, Oh S et al.: Hemagglutinin protein is a primary target of the measles virus-specific HLA-A2-restricted CD8+ T cell response during measles and after vaccination. J. Infect. Dis.195,1799–1807 (2007). [CrossRef] [Medline]
25 . Zilliox‌ MJ, Moss WJ, Griffin DE: Gene expression changes in peripheral blood mononuclear cells during measles virus infection. Clin. Vaccine Immunol.14,918–923 (2007). [CrossRef]
26 . Jin‌ P, Wang E: Polymorphism in clinical immunology – from HLA typing to immunogenetic profiling. J. Transl. Med.1,8 (2003). [CrossRef] [Medline]
27 . Dean‌ M, Carrington M, O’Brien SJ: Balanced polymorphism selected by genetic versus infectious human disease. Annu. Rev. Genomics Hum. Genet.3,263–292 (2002). [CrossRef] [Medline]

作者: ALALA    时间: 2014-8-6 18:24

28 . Meyer‌ UA: Pharmacogenetics – five decades of therapeutic lessons from genetic diversity. Nat. Rev. Genet.5,669–676 (2004). [CrossRef] [Medline]
29 . Crawford‌ K, Alper CA: Genetics of the complement system. Rev. Immunogenet.2,323–338 (2000). [Medline]
30 . Hopken‌ UE, Lu B, Gerard NP, Gerard C: The C5a chemoattractant receptor mediates mucosal defence to infection. Nature383,86–89 (1996). [CrossRef] [Medline]
31 . Peng‌ Q, Li K, Patel H, Sacks SH, Zhou W: Dendritic cell synthesis of C3 is required for full T cell activation and development of a Th1 phenotype. J. Immunol.176,3330–3341 (2006). [Medline]
32 . Carroll‌ MC: The complement system in regulation of adaptive immunity. Nat. Immunol.5,981–986 (2004). [CrossRef] [Medline]
33 . Roozendaal‌ R, Carroll MC: Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev.219,157–166 (2007). [CrossRef] [Medline]
34 . Ochs‌ HD, Wedgwood RJ, Heller SR, Beatty PG: Complement, membrane glycoproteins, and complement receptors: their role in regulation of the immune response. Clin. Immunol Immunopathol.40,94–104 (1986). [CrossRef] [Medline]
35 . Lewis‌ LA, Ram S, Prasad A et al.: Defining targets for complement components C4b and C3b on the pathogenic neisseriae. Infect. Immun.76,339–350 (2008). [CrossRef] [Medline]
36 . Awdeh‌ ZL, Alper CA: Inherited polymorphism of human C4 as revealed by desialyzation. Immunobiology158,35–41 (1980). [Medline]
37 . Kopf‌ M, Abel B, Gallimore A, Carroll M, Bachmann MF: Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med.8,373–378 (2002). [CrossRef] [Medline]
38 . Beebe‌ DP, Schreiber RD, Cooper NR: Neutralization of influenza virus by normal human sera: mechanisms involving antibody and complement. J. Immunol.130,1317–1322 (1983). [Medline]
39 . Niwa‌ Y, Kanoh T: Immunological behaviour following rubella infection. Clin. Exp. Immunol.37,470–476 (1979). [Medline]
40 . Black‌ FL, Hierholzer W, Woodall JP, Pinhiero F: Intensified reactions to measles vaccine in unexposed populations of American Indians. J. Infect. Dis.124,306–317 (1971). [Medline]
41 . Vestergaard‌ M, Hviid A, Madsen KM et al.: MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. JAMA292,351–357 (2004). [CrossRef] [Medline]
42 . Kingsley‌ JD, Varman M, Chatterjee A, Kingsley RA, Roth KS: Immunizations for patients with metabolic disorders. Pediatrics118,E460–E470 (2006). [CrossRef] [Medline]
43 . Haas‌ RH, Parikh S, Falk MJ et al.: Mitochondrial disease: a practical approach for primary care physicians. Pediatrics120,1326–1333 (2007). [CrossRef] [Medline]
44 . Kitchener‌ S: Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX. Vaccine22,2103–2105 (2004). [CrossRef] [Medline]
45 . Haber‌ P, DeStefano F, Angulo FJ et al.: Guillain–Barré syndrome following influenza vaccination. JAMA292,2478–2481 (2004). [CrossRef] [Medline]
46 . Kemper‌ AR, Davis MM, Freed GL: Expected adverse events in a mass smallpox vaccination campaign. Eff. Clin. Pract.5,84–90 (2002). [Medline]
47 . Halsell‌ JS, Riddle JR, Atwood JE et al.: The Department of Defense Smallpox Vaccination Clinical Evaluation Team: Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA289,3283–3289 (2003). [CrossRef] [Medline]
48 . Singh‌ R, John TJ, Cherian T, Raghupathy P: Immune response to measles, mumps & rubella vaccine at 9, 12 & 15 month

作者: junhun    时间: 2014-8-6 18:25


相关疾病:
肿瘤
从我们实验室的肿瘤疫苗的结果来看比较悲观,疫苗一定程度上减缓了肿瘤的过程,但是一旦免疫后动物的肿瘤突破免疫进入快速生长的时期生长速度超过PBS的快速生长速度。就像是低浓度抗生素前期减缓了细菌生长,但是耐药菌比例的增加使得细菌不再受低浓度抗生素的影响。而且免疫系统在促进肿瘤生长方面的研究结果很可能显示如果肿瘤疫苗效果丧失也许加速肿瘤生长,这和我们实验室的前面观察到的现象比较吻合。

作者: IAM007    时间: 2014-8-6 18:25

相关疾病:
禽流感
请问禽流感疫苗、SARS疫苗一直没有生产出来,而HINI流感疫苗却为什么已能够生产

作者: TNT    时间: 2014-8-6 18:26

请问禽流感疫苗、SARS疫苗一直没有生产出来,而HINI流感疫苗却为什么已能够生产

==========================================================================================================

相关疾病:
流行性感冒禽流感
2009的HINI流感实际上和每年发生的普通流感没有本质的区别,当然,其超强的传播能力是需要重视,这个从2009H1N1发病短段几个月后,全球不同国家和地区的好几万分离株保持高度同源性可以看出.
而每年用于流感病毒预防的流感疫苗(包括B型和A型流感)研发生产是非常成熟的.基本套路还是美国上世纪60年代制定的标准, PR8重组然后鸡胚大量繁殖做全病毒苗.
所以,当2009H1N1来的时候,只不过是换过毒株而已.但是,是否有效还得看用后评价了.
而禽流感(H5N1)则不同,这个是禽源的病毒,许多安全性需要考虑.
SARS就更难了.
其他搞SARS的战友来补充.

作者: 969    时间: 2014-8-6 18:26

相关疾病:
牛痘
我就知道有疫苗是“人痘”和“牛痘”
国家还得多多的研究下其他疫苗才对!

作者: 04906    时间: 2014-8-6 18:26


相关疾病:
呼吸系统疾病慢性阻塞性肺疾病呼吸道感染肺炎疹普通感冒病毒感染麻疹感染支气管哮喘
我是学呼吸的。应用于呼吸系统疾病的疫苗不多,我所知的有肺炎链球菌多糖疫苗、流感杆菌疫苗、流感疫苗、多价细菌疫苗(lantigen,兰菌净)等。它们都被写入了慢性阻塞性肺疾病全球防治创议(GOLD指南),经实验证实可以提高呼吸道粘膜的特异和非特异免疫,促进DC和淋巴细胞活化,促进上呼吸道定植病原的清除,增加粘膜sIgA含量,减少呼吸道感染和COPD急性加重。
疫苗研发这个论题给了我很大教育。对此的一些菜鸟问题和外行想法。
1 粘膜的细菌定植有些是有害的,如幽门螺杆菌(Hp),那是必须清除的。有些则是条件致病的,比如上呼吸道的流感嗜血杆菌H.influenzae定植,很多健康人都可以有,吸烟者更多(尼古丁可促进流感杆菌生长),稳定期COPD患者尤可占到30-40%。而COPD的发病率,在中国达到8.2%之多。那么,是对所有人都有必要应用流感杆菌疫苗,还是只针对吸烟者和COPD患者,或COPD患者?能否通过某种方法,如前面有战友提到用疫苗给机体正常细胞加“盔甲”的思路,通过改变抗原表位、粘附分子/受体结合位点、细胞形态等等,使细胞从向病原体“敞开大门”转变为“百毒不侵”,不受病原体侵害?
2 肺这种特定的器官,维持通气和换气功能始终是最重要的。得了肺癌切去一侧肺也不要紧,只要爬楼梯不喘即可。肺炎链球菌(S.pneumoniae)以菌毛侵袭致病,无内外毒素,通过7-14天的抗生素治疗后肺炎易吸收消散。而金葡菌则容易“烂肺”,肺上这里一个洞那里一个洞。很多病毒如麻疹、鼻病毒感冒的病程是自限的。能否通过某些疫苗,将金葡菌肺炎“转变”成自限性和容易吸收消散的类型,或者让这种致病菌变成不影响肺功能的定植菌?能否将导致慢性感染和潜伏(如单纯疱疹病毒)的病毒感染转变成麻疹那样容易好透的感染?
3 对不同目标人群,如对于免疫功能正常者/免疫功能低下者,对免疫功能低下是否需要按原发性(遗传性的)/继发性、体液为主(如丙球低下)和细胞为主(如AIDS),分别采用不同的疫苗免疫策略?
4 与感染不相关的疫苗研究,发展似乎总是不尽如人意。如支气管哮喘、食物过敏、变应性鼻炎等无菌性的过敏性炎症,至今治疗策略的第一条仍是“避免接触抗原刺激”。对于这种本质是粘膜慢性炎症的疾病,除广谱变应原疫苗之外,可否在Treg等细胞免疫学的基础上,开发出广谱的细胞疫苗?
5 接上,疫苗何时可以定制和个体化,是对90%的人有效转变成对每个个人都有效?
6 从来没想过,肺表面蛋白-A(SPA)还有这种作用:2008年JI的一篇文章讲SPA可与HIV结合,抑制HIV对CD4+T细胞的感染和促进DC对病毒的吞噬。粘膜免疫学(mucosal immunology)的进展对疫苗的研究到底有多大作用?
cuturl('http://www.jimmunol.org/cgi/content/abstract/181/1/601?maxtoshow=&HITS=&hits=&RESULTFORMAT=&fulltext=mucosal+anal+hiv+gp120&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&fdate=1/1/2006&resourcetype=HWCIT')
7 疫苗的给予方法,是全身给予还是局部给予更好?

作者: chuntian1983    时间: 2014-8-6 18:27

其实,在我脑子里一直有这样一种很粗浅的想法。基本上无论是细菌性传染病或者是病毒型传染病,其治病机理多半为抗原在体内侵染正常细胞,进行繁殖,在繁殖过程中产生毒素或其他物质,抑或引起强免疫反应,造成机体损伤。
如果我们可以研制出一类疫苗,将人体正常细胞表面的蛋白结构保护起来,就好像给细胞穿上一件衣服一样。那么无论是来细菌或者是病毒,那么受侵染的可能性会大大降低,甚至达到百毒不清的地步。说白了,就是改变人体细胞表面抗原结合位点来达到免疫的目的。不知这样的研究是否太超前?哈哈,就当是提出的一种见解吧。
......

===================================================================================

相关疾病:
传染病
可是正常细胞表面的蛋白往往需要通过与其它蛋白相互作用来实现正常的功能,这样很可能会阻断正常的反应。

作者: junhun    时间: 2014-8-6 18:28

请问禽流感疫苗、SARS疫苗一直没有生产出来,而HINI流感疫苗却为什么已能够生产

===========================================================================================================

相关疾病:
流行性感冒感染

我们先来看看流感病毒的特性吧。流感病毒一共有3个型别:甲型、乙型和丙型。其中甲型流感病毒最危险,它可以感染禽类,并通过突变获得的对人的感染能力。但是乙型和丙型只能感染人类。甲型流感病毒除了能利用抗原漂移逃逸策略,还能利用诱饵和改变的策略。如果甲型流感获得了禽类或猪的RNA分子片段(非人源序列)并编码血凝素分子的话,人类没有见过这些新的分子,对他们也缺乏保护性抗体。因此当甲型流感病毒获得鸟类或猪的RNA片段,产生抗原转变时,就可能导致世界范围内的灾难性流感暴发流行。这就是为什么近年来流感频频爆发的原因。其实SARS爆发也是如此。只不过一个疫苗的研制除了清楚病毒的特性、逃逸策略外,还需要合适的培养载体(体外培养)才能成功。所以不难理解为什么流感暴发很快就难研制出疫苗,而SARS却迟迟不能。

作者: loli    时间: 2014-8-6 18:28


在疫苗设计中有一个重要的原则:免疫平衡,无论是细菌,病毒还是肿瘤疫苗。
细胞免疫或者体液免疫极端增强,也许免疫的开始阶段会有好的结果,但有悖于疫苗免疫的初衷:调节host 的免疫系统平衡,因为Host已经处于失衡状态,或者说host是免疫系统是正常的,接种疫苗就不应该打破这种美好的状态。
经典的免疫学理论仍然有效,但需进一步解释和实践。
欢迎指正!

作者: dodoit    时间: 2014-8-6 18:29


大家的讨论非常好!
我也对疫苗研发有兴趣。我组建了一个QQ群(群号: 90851779 ),专门讨论疫苗相关的话题。
因为本人的结构生物学背景,所以对疫苗设计最为关注。当然,分子免疫学也是一直令我十分着迷的学科。本人还对系统生物学有兴趣,想利用系统生物学的一些思路和策略来设计和研发新型疫苗。
欢迎有兴趣者加入。
谢谢!

作者: dodoit    时间: 2014-8-6 18:29

本人还对系统生物学有兴趣,想利用系统生物学的一些思路和策略来设计和研发新型疫苗。

==================================================

I have no idea about this, can you give us some introduction????
作者: rxcc33    时间: 2014-8-6 18:30

我也来顶一下, 我现在主要从事的是多肽疫苗的工作, 我一直很看好多肽疫苗和基因疫苗。 目前我们实验室有一些预测多肽抗原表位的软件, 对线性多肽的预测能达到90%以上, 但对空间的构像表位还在摸索。
作者: 66+77    时间: 2014-8-6 21:04


我突然有一个很不切实际的想法:
所有生物,包括病毒共存在这个世界上,通过不断的竞争和进化,最后就是适者生存,达尔文的进化论似乎是自然选择的结果,人类对抗疾病是否能算在这个范畴里面?我觉得是人类在试图改变自然选择,当然人类是伟大的,也确实取到了很多成绩。反过来想,如果人类跟其它动物一样,我们没有这么伟大的智慧,没有发现什么免疫学、基因工程等,只能顺从自然选择的结果,当一种灾难性的疾病爆发的时候,世界上绝大部分的人可能都会死亡,如果有幸存的那部分人就等于是进化了,他们为什么能幸存?跟被淘汰的那部分有什么区别?遗传上改变了什么?试想一下人类自然遗传上会什么进化来对付自然挑战?
当然这纯属是想象,呵呵,人类是不可能人自己“自生自灭”的!但是对这种通过自然选择幸存下来的那部分人或动物,它自身最有可能改变了什么的猜想,是否能给我们的研究提供新的思路呢?
生物世界里还有共生,共生是否也是远古时代竞争导致的结果呢?
人类基因组里面有很多内含子,这些基因又是否在不断的遗传进化中吸收某些病源体的基因而形成的?又或者它隐含着某种特殊的功能,在某种强度的外界条件的激发下慢慢地转变成人类对抗疾病的有用基因?
纯属小弟的胡思乱想!!哈哈哈....

作者: milkdog    时间: 2014-8-6 21:04

从生产线上看疫苗开发:
我是兽药生产企业的研发着,每次看到关于基因疫苗,感觉无法真正在我们的车间里生产。
主要问题就是成本高。
目前有一种DNA免疫增强剂,是美国动物保健品公司研发主管推荐我们在佐剂开发中添加的成分,20kb左右,但如果大规模合成这个2mg左右需要2000左右人名币,折合到每头份疫苗中约1头猪7块钱,现在市场上疫苗几乎还没有7块1头份的呢。所以说根本无法实现。
另外个人意见:DNA 序列特异性高,这比病原的血清型还要复杂,所以说对疾病的预防特异性达不到要求
个人没做过生产,但感觉也不象你说的那样,如何提高表达效率,降低生产成本确实是DNA疫苗的一个瓶颈。
但随着活体电穿孔技术的普及,这个已经不再是一个问题了。目前国际上有3个兽用产品上市,人核酸疫苗进入临床的也有若干家,有的一期效果也挺好。活体电穿孔可提高表达效率10-100倍,当然,仪器质量、性能、不同质粒、实验人员的操作都有关系。

作者: milkdog    时间: 2014-8-6 21:06

1:DNA疫苗和各种亚单位疫苗....都是骗人的!新型佐剂的研究...!哈哈!就像寻找“长生不老药”一样可笑!
2. 我们现有的病毒学与免疫学理论,也就是对病毒和机体的关系本身了解了那么一点点......,还等着免疫学的重大新理论!!!!?盲人摸象!耳朵是啥样你还没摸全呢!就喊着要发现“大象的新品种”!!!
3. 各种新型疫苗(多肽疫苗,载体疫苗,DNA疫苗等)至少在未来50年,甚至更长时间,将长期停留在理论研究或者实验室水平上!!!。
有点太悲观了吧。至少动物DNA疫苗已经在国外上市了

作者: ALALA    时间: 2014-8-6 21:08


Influenza vaccine market dynamics
The market for seasonal influenza vaccines, sized at US$2.8 billion in 2008–2009 across the seven major markets (United States, Japan, France, Germany, Italy, Spain and UK), has had a strong compound annual growth rate of 12.6% since 2005–2006 (Ref. 1). In recent years, the sector has benefited considerably from an increase in disease awareness and funding, triggered by the threat of an influenza pandemic. However, owing to increasing competition and market commoditization, maintaining this strong growth momentum will be a key challenge in the future. The cautious stance of regulators towards new technologies inhibits successful product differentiation, particularly in the crucial US market. Improved vaccines for the elderly, alongside faster and more flexible manufacturing technologies, are the key unmet needs.
Challenges of the market
The influenza vaccines market is a challenging sector for several reasons. Besides requiring annual updates, seasonal influenza vaccines have to be produced and shipped within a short time frame of 6 months. Manufacturing delays and reduced output can result in losses of revenue and market share. Additionally, the demand for seasonal influenza vaccines is variable and often unpredictable, being influenced by factors such as the weather, the timing and severity of the influenza season, vaccine availability and public awareness of vaccination. These factors make production planning difficult. The pandemic influenza vaccines business is even more unpredictable and depends almost exclusively on government stockpiling and supply contracts.
A re-emerging focus for vaccine players
Historically, the influenza vaccine landscape has undergone marked fluctuations, particularly in the United States. The country remains the single largest market for seasonal influenza vaccines, accounting for 40% of overall sales across the seven major markets in 2008–2009 (Ref. 1). In the 1970s, at least ten US firms were marketing seasonal influenza vaccines. As a consequence of stricter FDA regulations and poor returns on investment compared with other pharmaceutical sectors, only three companies remained in the market in 2002: Wyeth, Aventis Pasteur (now Sanofi Pasteur) and PowderJect (now Novartis). In 2003, Wyeth ceased production of its own vaccines to concentrate on marketing MedImmune's (now part of AstraZeneca) FluMist, but decided to leave the flu space altogether in 2004.
Two factors prompted a change in US policy: the emerging threat of a pandemic caused by the H5N1 avian influenza strain since 2004 and a perceived vaccine supply shortage in 2004–2005 following disruptions at Chiron's (previously PowderJect's) manufacturing facility. The US government subsequently began to invest heavily into establishing US-based influenza vaccine production capacity, aiming to decrease the country's dependence on vaccine imports from few, mostly European, manufacturers. Furthermore, the US provided an additional growth stimulus by sequentially expanding recommendations on seasonal influenza vaccination to include more than 85% of the country's population by 2009 (Ref. 2). This combination of 'push' and 'pull' incentives transformed the sector's commercial potential, attracting numerous vaccine developers to build and expand their influenza portfolios in the United States. Following the market entry of GlaxoSmithKline (GSK) in 2005 and CSL in 2007, the number of vaccine suppliers for the US market has increased to five in 2009, with Sanofi Pasteur as the market leader (Fig. 1).
However, as the demand for seasonal influenza vaccination in the general population has failed to meet the expectations of suppliers, oversupply of these vaccines in the United States has become a growing problem during the past influenza seasons (Fig. 2).
This has triggered a growing commoditization of influenza vaccines. Prices, which increased from below $2 per dose in the late 1990s to $12 per dose at the peak of the business in 2007, have fallen over the past 2 years to reach a new low of $8.60 on average in 2009 (Ref. 3). To reverse this price decline, reduce the commodity nature of influenza immunizations and improve their market shares, vaccine developers are turning to new technologies that could offer product differentiation.
Developments in adjuvant technology

作者: ALALA    时间: 2014-8-6 21:10

One key area of interest is an enhancement of vaccine immunogenicity through adjuvants. The key advantage in the influenza sector is a reduction in the amount of antigen required for protective immunization. This so-called dose-sparing effect helps to increase the number of available vaccine doses. This is particularly important in a pandemic, when the supply, limited by manufacturing capacity, cannot meet the demand. Another advantage of adjuvanted vaccines is their potential for improved immunogenicity in the elderly, which is a key unmet need. Novartis and GSK are currently furthest advanced in developing these technologies for influenza. Both companies have already received European approval to make products using their oil-in-water-based emulsions MF59 and AS03, respectively. By contrast, gaining US approval for adjuvanted vaccines has proven difficult, with the FDA adopting a conservative position, presumably owing to a lack of data on the long-term safety profile of novel adjuvants. The current influenza A (H1N1) pandemic has rejuvenated interest in adjuvanted influenza vaccines, with several governments investing into large adjuvant stockpiles. Clinical studies investigating potential benefits of various adjuvanted pandemic influenza A (H1N1) vaccines were initiated. However, clinical trials of non-adjuvanted H1N1 vaccines have now demonstrated sufficient immune responses, indicating that at least in the early stages of vaccination against H1N1, adjuvants will not play a part in the US.
Improving manufacturing techniques
A further opportunity for product differentiation is the influenza vaccine manufacturing process. With the exception of Novartis's Madin–Darby canine kidney (MDCK) cell-based vaccine Optaflu, which gained European Union approval in 2007, all marketed seasonal influenza vaccines are still manufactured in chicken eggs. This process is not only lengthy and inflexible, but would also be unsuitable in the event of an avian influenza pandemic. To provide faster and more flexible alternatives, numerous companies are developing alternative production systems. Besides Novartis, Baxter is the only other player to have gained European approval for a cell-based influenza vaccine — its mock-up pandemic vaccine Celvapan, which is manufactured in Vero cells (a kidney epithelial cell line derived from African green monkeys). During the current pandemic, both companies are set to gain substantial commercial windfalls from using this faster production technology for H1N1 vaccine production. Smaller players, including Protein Sciences and Novavax, are developing production systems in insect cells based on the baculovirus system. Other strategies in earlier stages of development include the use of bacterial and plant expression systems.
Outlook
The current influenza A (H1N1) pandemic has boosted vaccine stockpiling contracts. Established manufacturers, particularly Novartis and GSK, are likely to draw the largest commercial benefit. Besides its direct impact on pandemic vaccine sales, H1N1 will also influence the future development of the seasonal influenza vaccines market. We think that the most likely outcome for future sales development will be a transient boost triggered by the current pandemic. Seasonal influenza vaccine uptake will increase considerably over the next two influenza seasons, with sales figures rising to $4 billion by 2010–2011 across the seven major markets. Once the pandemic has passed, however, we expect a period of stagnation caused by declining seasonal vaccination coverage in most population groups (Fig. 3). By 2018–2019, the seasonal influenza vaccine market size could reach $5 billion across the seven major markets, driven by further extensions of vaccination recommendations1. Sanofi Pasteur, which was market leader in 2008 with global influenza vaccine sales exceeding $1 billion5, will maintain its top position; however, we think that GSK and Novartis will increase their share owing to their competitiveness in new technologies such as adjuvants and cell-based manufacturing.

作者: hold住    时间: 2014-8-6 21:18


相关疾病:
严重急性呼吸综合征脊髓灰质炎
说一点和话题有点不着边的看法:
我工作以前做分子这块的,工作后才定位在疫苗开发,最近同事的实验结果才让我想到这些的。个人觉得现在病毒的传播变异与全病毒减毒活疫苗,或者是实验室减毒株的横向传播和在一些条件下变异加快是很有关系的。疫苗生产有相关的GMP规范操作、操作环境等,但在疫苗研发没有细化的规范,各个实验室的规范各不相同,就拿我们单位来说,生产可以有规章等来考量操作尽可能杜绝污染发生,而研发就靠各实验室的管理、实验人员的操作等,一般科研单位都有学生在就读等,这就会造成规范化实施的困难,包括在大学里的实验室也是一样的。因为学生是不停的进不停地走,实验操作的规范化就不是很容易,安全意识也不是很高。原来非典时,不是就有一起传染就是从实验室由学生带出去的么,所以我觉得要是科研的环境操作等也像生产的GMP那样细化规范化,也许可以减少一些交叉污染,减少病毒的人为变异,减少实验数据的人为干扰。曾经在大学中就读是发现一段时间后自己的无抗性菌居然莫名奇妙有抗性,而且是整个实验室的菌有点这种“变异”,只能从另外的科室要新的菌,但是再过几个学年又有“变异”。现在同事做的是唾液中脊灰抗体的检测,原设计的空白对照就是成人的唾液,结果取了她本人的,我和其他同事的、其他行政科室同事的,做出来都是至少一个型是阳性,同事本人么不用说是强阳性(她本人到还解释得通,因为长期接触采集的样品,临床样品等,会有抗体是正常的只是行政科室的同事的结果就有点出乎意料了)所以,才促使我想到这些的。
现在也是借这个机会发表下自己的看法。

作者: ladyhuahua    时间: 2014-8-6 21:21

其实,在我脑子里一直有这样一种很粗浅的想法。基本上无论是细菌性传染病或者是病毒型传染病,其治病机理多半为抗原在体内侵染正常细胞,进行繁殖,在繁殖过程中产生毒素或其他物质,抑或引起强免疫反应,造成机体损伤。
如果我们可以研制出一类疫苗,将人体正常细胞表面的蛋白结构保护起来,就好像给细胞穿上一件衣服一样。那么无论是来细菌或者是病毒,那么受侵染的可能性会大大降低,甚至达到百毒不清的地步。说白了,就是改变人体细胞表面抗原结合位点来达到免疫的目的。不知这样的研究是否太超前?哈哈,就当是提出的一种见解吧。
......

==============================================================================================================

相关疾病:
传染病

正常暴露在细胞膜表面的膜蛋白是有生理功能的,如果穿上衣服可能会不干活了。我记得有些人群对HIV免疫就是自身的细胞膜上的受体蛋白突变,丧失了原本功能,但是同时也躲避了HIV入侵。

作者: kulee    时间: 2014-8-6 21:22

我是在读小硕一个,目前在研究幽门螺杆菌疫苗,最根本的问题应该还是某种细菌的治病机制,这个东西搞懂了,才可以有的放矢,制造出好的疫苗。
作者: tie8    时间: 2014-8-6 21:30

寄生虫的疫苗开发似乎比较难哦.
为什么? 虫体太大, 特异性抗体和T细胞能不能搞定啊?
个人认为, 疾病的控制策略应该很多种,或者说,疾病的控制应该是采取综合措施和因病而异.
对付那些传播性能很高,也就是说,通过空气尘埃,飞鸟,人之间近距离接触,污染的用具和食品等进行的,病毒病,疫苗是很成功的. 一些细菌病也是如此.
但是,对于像疟疾,血吸虫等寄生虫病,我认为,环境治理措施应该有效得多.包扩其中间宿主的控制,和药物治疗. 这也是为什么疟疾和血吸虫在我国得以控制的原因.当然,高效疫苗开发也应该是我们努力的方向.
maoadai 和gofrom2004战友说的很好, 让我们学到了许多东西.
目前疫苗开发研究热潮中,似乎把寄生虫给忘记了.这是非常不明智的,国家应该投入一定的比例来做. 防患于未然,何况,我国好象血吸虫在洞庭湖又重现了哦!
期待更多虫子疫苗方面的研究讨论.
学习中............
gofrom2004 战友在他乡辛苦了!!!
......

=======================================================================================

相关疾病:
疟疾寄生虫病细菌感染感染
个人认为,寄生虫疫苗要看具体的病原体。对于原虫,大可以采用疫苗防治。特别是对非洲那样的老少边穷地区。
原虫的免疫中无论体液免疫还是细胞免疫,都很类似细菌感染中的免疫过程。
比如红细胞期的疟原虫,IgG调理 巨噬细胞吞噬作用在清理感染红细胞中起了主要的作用。
至于蠕虫,个人认为,机体免疫在感染中起的正面作用有限。

作者: 00无名指00    时间: 2014-8-6 21:31


相关疾病:
传染病
唉,要是有一种万能的细胞载体来繁殖抗原,而且这种抗原也是各种传染性疾病都能防治,就想免疫球蛋白一样该多好啊

作者: TNT    时间: 2014-8-6 21:32



QUOTE:
原帖由 00无名指00 于 2014-8-6 21:31 发表 bbcodeurl('http://bbs.antpedia.com/images/common/back.gif', '%s')

相关疾病:
传染病
唉,要是有一种万能的细胞载体来繁殖抗原,而且这种抗原也是各种传染性疾病都能防治,就想免疫球蛋白一样该多好啊

相关疾病:
传染病

关键是抗原

作者: summerxx    时间: 2014-8-6 21:33

我也来顶一下, 我现在主要从事的是多肽疫苗的工作, 我一直很看好多肽疫苗和基因疫苗。 目前我们实验室有一些预测多肽抗原表位的软件, 对线性多肽的预测能达到90%以上, 但对空间的构像表位还在摸索。
你们实验室预测的是B表位还是T表位呢?

作者: 张先生    时间: 2014-8-6 21:34


我是做多肽疫苗的,我们公司的多肽疫苗目前已经上市两年了!还是有前景的!多肽疫苗!

作者: yyaxw84    时间: 2014-8-6 21:34


相关疾病:
新城疫禽流感
关于兽用疫苗,到目前为之还是传统意义上的疫苗,基因工程疫苗只有以新城疫为载体的禽流感二联苗。早些的是伪狂犬的基因缺失苗,现在国内厂家基本上是以灭活苗居多,基因工程疫苗前景好,但是近期不会有大的发展前途,生物安全是一个方面,另外能否代替传统疫苗的免疫效果,大面积应用的时候是否能够达到理想的预防效果,如果和传统灭活苗、弱毒苗相当,或者优点差异不显著,基本上只能停留在大学,或者科研院所的实验室里面,审批程序不过关,别的不了解,禽流感的DNA疫苗就是个例子,CMV启动子卡了,后来抗性又卡了,步履维艰,现在传统苗,也是旧瓶装新酒,换个毒株,等等,具体的就不谈了。有时候对兽用疫苗的研发前景感觉有点暗淡,虽说蛋糕会越来越大,不知道最后国内厂家能切到多少??也希望各位在实验室的时候也考虑一下实际中的应用,有些确实是没有接触到。等到接触之后发现和在实验室的时候的差别太大了,~~~希望大家不要放弃希望,等着80后慢慢的成为中坚的时候,希望会更好~!

作者: zhenxin    时间: 2014-8-6 21:34


想问下,疫苗的基础研究包括什么?将来好找工作吗?

作者: ending    时间: 2014-8-6 21:36

3.短时间大量生产疫苗的瓶颈问题是什么? 有什么方法或例子可以借鉴?

=======================================================================================

比如说短时间大量的流感病毒疫苗的问题是:通常用鸡胚来生产流感病毒,瓶颈就是能否有足够的鸡胚可以用
作者: ending    时间: 2014-8-6 21:37

1.经典的免疫学理论指导目前的疫苗开发是不是仍然有效?是不是需要发展新的理论?
2.目前成熟的疫苗似乎大多数是全病原体疫苗, 部分病原体(能诱导产生有效免疫反应的部分)制疫苗的缺点是什么?
3.短时间大量生产疫苗的瓶颈问题是什么? 有什么方法或例子可以借鉴?

========================================================================================================

另外最重要的问题是:
能否研究出一个经济适用性的疫苗来给广大民众来使用是个重要问题。若价格很贵,广大民众用的不多,还是达不到其控制疾病的目的。

作者: yapuyapu    时间: 2014-8-6 21:40

关于兽用疫苗,到目前为之还是传统意义上的疫苗,基因工程疫苗只有以新城疫为载体的禽流感二联苗。早些的是伪狂犬的基因缺失苗,现在国内厂家基本上是以灭活苗居多,基因工程疫苗前景好,但是近期不会有大的发展前途,生物安全是一个方面,另外能否代替传统疫苗的免疫效果,大面积应用的时候是否能够达到理想的预防效果,如果和传统灭活苗、弱毒苗相当,或者优点差异不显著,基本上只能停留在大学,或者科研院所的实验室里面,审批程序不过关,别的不了解,禽流感的DNA疫苗就是个例子,CMV启动子卡了,后来抗性又卡了,步履维艰,现在传统苗,也是旧瓶装新酒,换个毒株,等等,具体的就不谈了。有时候对兽用疫苗的研发前景感觉有点暗淡,虽说蛋糕会越来越大,不知道最后国内厂家能切到多少??也希望各位在实验室的时候也考虑一下实际中的应用,有些确实是没有接触到。等到接触之后发现和在实验室的时候的差别太大了,~~~希望大家不要放弃希望,等着80后慢慢的成为中坚的时候,希望会更好~!!
......

=======================================================================================================


相关疾病:
新城疫禽流感

现在来看,市面上的伪狂都是缺失苗呢,短短两年时间,生物疫苗的研发和市场拓展都非常快!大家都来谈谈近两年的心的吧 ):





欢迎光临 分析测试百科 (http://bbs.antpedia.com/) Powered by Discuz! 5.5.0