拉曼光谱在催化研究中的应用

一.激光拉曼光谱仪

拉曼光谱在催化研究中的应用
拉曼光谱应用于催化领域的研究始于70年代,并在负载型金属氧化物、分子筛、原位反应和吸附等研究中取得了丰富的成果。尤其是在过去的十年中发展更为迅速,拉曼光谱之所以在催化研究的应用中发展迅速,有如下几个方面的原因:

(1)拉曼光谱能够提供催化剂本身以及表面上物种的结构信息,这是认识催化剂和催化反应最为重要的信息;
(2)拉曼光谱较容易实现原位条件下(高温、高压,复杂体系)的催化研究。原位条件下对催化剂进行表征是目前催化剂表征的主要方向;
(3)拉曼光谱可以用于催化剂制备的研究,特别是可以对催化剂制备过程从水相到固相的实时研究。这是许多其它光谱技术难以进行的;
(4)近年来随着探测器灵敏度的大幅度提高和光谱仪的改进,拉曼光谱仪的信噪比大大提高,但也存在着一些困难。其中荧光干扰问题和灵敏度较低是阻碍拉曼光谱得到广泛应用的最主要的问题。但近年来发展起来的紫外拉曼光谱技术有效地解决了催化研究中所遇到的荧光干扰问题。

拉曼光谱在催化研究中的应用除了具有上述明显的特征和优点外,与其同属于分子光谱技术的红外光谱相比也具有十分突出的优点。


拉曼光谱与红外光谱都能得到分子振动和转动光谱,但分子的极化率发生变化时才能产生拉曼活性,对于红外光谱, 只有分子的偶极矩发生变化时才具有红外活性,因此二者有一定程度的互补性,而不可以互相代替。拉曼光谱在某些实验条件下具有优于红外光谱的特点,因此拉曼光谱可以充分发挥它在催化研究中的优势:

(1)红外光谱一般很难得到低波数(200cm-1以下)的光谱,但拉曼光谱甚至可以得到几十个波数的光谱。而低波数光谱区反映催化剂结构信息,特别如分子筛的不同结构可在低波数光谱区显示出来;
(2)由于常用载体(如γ-A12O3和SiO2等)的拉曼散射截面很小,因此载体对表面负载物种的拉曼光谱的干扰很少。而大部分载体(如γ-A12O3、TiO2和SiO2等)在低波数的红外吸收很强,在1000cm-1以下几乎不透过红外光。
(3)由于水的拉曼散射很弱,因此拉曼比红外更适合进行水相体系的研究。这对于通过水溶液体系制备催化剂过程的研究极为有利,对于水溶液体系的反应研究也提供了可能性。
拉曼光谱在催化研究中的应用大致有以下主要用途(当然不完全,本人知识有限)

拉曼光谱在分子筛研究中的应用

(1)分子筛的骨架振动

(2)杂原子分子筛的表征

(3)分子筛的合成

催化剂表面吸附的研究
    目前拉曼光谱在催化剂表面吸附行为研究中的主要用途之一就是以吡啶为吸附探针对催化剂的表面酸性进行研究。

催化剂表面物种的研究

拉 曼光谱在负载型金属氧化物的研究中发挥了很重要的作用,不但能够得到表面物种的结构信息,而且能将结构与反应活性和选择性进行很好地关联,这在催化研究中 是非常重要的。但是,由于载体一般有很强的荧光干扰,使一些氧化物,特别是低负载量氧化物的常规拉曼光谱研究遇到了很大的困难。

催化剂表面相变的研究

金属氧化物配位结构和分散状态的研究

金属氧化物的分散状态可以通过多种方法如拉曼光谱法、化学吸附法、低温氧吸附法、X射线衍射法以及光电子能谱法等,而其中拉曼光谱法具有其独特的优点。它不仅可在广泛的气氛压力范围内测定表面粗糙的样品,使实验操作简单快速,而且可在整个振动频率范围内给出表面结合状态的信息。

催化剂积炭失活的研究

      催化剂表面的积炭主要是一些高度脱氢的碳氢化合物,例如:烯烃,稠环芳烃,石墨前体和石墨等。这些物种的形成机理和表面状态很难研究 虽然拉曼光谱在理论上讲应该是一种理想的表征表面积炭的技术,但由于这种碳氢化合物有很强的荧光干扰,很难用常规的可见拉曼光谱进行表征。采用紫外激发线,不但使拉曼散射截面增加,而且有效避开荧光干扰,得到信噪比很好的紫外拉曼光谱。

原位反应的研究

拉曼光谱用于原位反应研究有其独特的优势:

(1)气相光谱的干扰非常弱,因而能在高温高压工作条件下获得催化剂的原位拉曼光谱;

(2)样品池可以采用简单的石英或玻璃池即可;

(3)固体吸附剂或载体的拉曼散射一般都很低,特别是最典型的载体氧化物如氧化硅和氧化铝等,能得到低频区表面吸附物种的拉曼光谱;

(4)在红外光谱中,高温时遇到的问题是来自样品和样品池的黑体辐射。当用绿、蓝和紫外区的激光作为激发线时,在拉曼光谱上可以避免黑体辐射产生的干扰。

氧空穴表征
    最近看文献时,发现Raman的另外一大用处是可以用来表征催化剂的氧空穴,尤其是那些通过掺杂其他原子而引起的氧空穴!


几种重要的拉曼光谱分析技术

(1)单道检测的拉曼光谱分析技术

(2)以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术

(3)采用傅立叶变换技术的FT-Raman光谱分析技术

(4)共振拉曼光谱定量分析技术

(5)表面增强拉曼效应分析技术

(6)近红外激发傅立叶变换拉曼光谱技术