蛋白质与蛋白组学 » 讨论区 » 经验共享 » 【讨论帖】包涵体蛋白的纯化及复性讨论专贴

采购询价

点击提交代表您同意 《用户服务协议》 《隐私政策》

 
需要登录并加入本群才可以回复和发新贴

标题:【讨论帖】包涵体蛋白的纯化及复性讨论专贴

ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
31
 
10、怎样鉴定融合蛋白复性是否成功
问:最近在做GST融合蛋白的纯化,由于目的蛋白主要存在于包涵体中,所以在变性条件下将包涵体溶解,经复性,透析后用GSH sepharose 4B纯化,结果得到了比较纯的融合蛋白,这是否说明GST的活性已得到恢复(因为能与GSH结合),请问这种情况下,是否能代表我的目的蛋白的活性也得到了恢复?由于我的目的蛋白只是一个蛋白的某一段,不具有酶活性,也不是什么受体之类的,所以不知如何鉴定它的活性。

如果我得到的是变性的融合蛋白,那么用于制备多抗或者单抗会有影响吗?

如果我的融合蛋白是可溶性的,那么用GSH sepharose 4B纯化得到的融合蛋白可以直接用于制备多抗吗?溶液中的GSH,Tis等成分对免疫动物有影响吗?是否需要透析除取这些成分才能去免疫动物呢?

答:1)。不可以。GST 具体多大忘记了,但做为TAG 使用的蛋白一般是很小的一段AA,可以用相对应的抗体做PULL DOWN,亲和纯化等。但蛋白的活性是需要构象存在的,一小段TAG 空间结构几乎没有,就算是没有恢复活性的蛋白也可以与这小段AA 对应的抗体结合。

2)。变性蛋白只是天然蛋白伸直的了产物,用来免疫动物具有更强的抗原性。只是天然蛋白中被包在内部的抗原决定簇也会暴露出来,如果用该变性抗原制备的抗体来检测变性抗原是可以的,如果用来检测天然蛋白,可能会有假阳性。做单抗也可以,同样道理,筛选出的单抗可能对抗的抗原决定簇处于天然抗原的内部,是否能用还要看将来该单抗用来干什么。

3)。免疫动物要求抗原体种尽量小。在这种小体积的情况下,缓冲液里的小分子成分只要没毒影响就不大,可以不用考虑。
4) GST为26kd,你得到的蛋白活性应通过 目的蛋白功能分析才能验证是否复性。GST融合蛋白可以免疫动物,但抗体纯化须用GSH-sepharose 4B 和蛋白A或G进一步纯化,去掉抗GST抗体,如果你的目的蛋白很大,可以凝血酶切割除去 GST,再免疫动物.GSH,Tris 是小 分子,没影响。
5) 既然目的蛋白没有活性,何来得活性鉴定,复性是否成功,就主要是看是否恢复到原来特有的三级结构,这就要看你目的蛋白的特异性,和天然的目的蛋白片断进行比较,看其复性是否彻底,这必须有个对照,才能知道复性是否完全。不知道你得到目的蛋白有什么用处,如果是用来做抗原,就没有必要进行活性鉴定了。
变性的融合蛋白做抗原是没有影响的,gst的分子量是26kda,当然,如果将融合伴侣除去,抗体的特异性会要更好一些,如果不除,影响也不会很大。最好进行透析,除去溶液中的杂物质,但是Tris没有什么关系,其就如同PBS一样,本身是缓冲体系,不会对免疫造成太大影响。
6) 做抗原的话,变性了没关系的;纯化后可以直接免疫动物,我们这就有人做,不过他是用的His融合表达;挂着GST挺好的,不切也行,蛋白大些岂不是抗原性更强些
另外,你看没看过菌液上清里的蛋白量?那里可能有许多的有活性的蛋白呀

五、包涵体的纯化
复性以后的蛋白质的纯化策略与可溶性蛋白质相似,这里不再赘述。(注:当然也可以先纯化然后再复性———一般多采用凝胶柱,或者纯化与复性同步进行———比如柱上复性。)

六、综述以及其他
1、蛋白复性和纯化在线资料
1. 包涵体表达的蛋白的复性 cuturl('http://www.sinobio.net/method/ecoli.htm#1')
2. 重组蛋白纯化方法
组织细胞的破碎 cuturl('http://www.sinobio.net/method/sansheng/dissociation.htm')
目标蛋白的粗提 cuturl('http://www.sinobio.net/method/sansheng/extracting.htm')
蛋白质沉淀方法 cuturl('http://www.sinobio.net/method/sansheng/precipitation.htm')
色谱分离 cuturl('http://www.sinobio.net/method/sansheng/chromatogram.htm')
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
32
 
2、综述
蛋白的复性是一个世界性的难题,没有通用的方法,甚至没有靠得住的规律,只能试。

可以参考以下文章。该文出处已经忘了,如果有人知道原创作者或网上出处,请补充。

包涵体表达的蛋白的复性包涵体表达的蛋白的复性

包涵体:
包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。

包涵体的组成与特性:
一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,难溶与水,只溶于变性剂如尿素、盐酸胍等。

包涵体的形成:
主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。
1、表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。
2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。
3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。
4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。因此有人采用共表达分子伴侣的方法以增加可溶蛋白的比例。

包涵体表达的有利因素:
1、可溶性蛋白在细胞内容易受到蛋白酶的攻击,包涵体表达可以避免蛋白酶对外源蛋白的降解。
2、降低了胞内外源蛋白的浓度,有利于表达量的提高。
3、包涵体中杂蛋白含量较低,且只需要简单的低速离心就可以与可溶性蛋白分离,有利于分离纯化。
4、对机械搅拌和超声破碎不敏感,易于破壁,并与细胞膜碎片分离。

破菌:
1、机械破碎
2、超声破碎
3、化学方法破碎

分离:
1、离心:5000-20000g15min离心,可使大多数包涵体沉淀,与可溶性蛋白分离。
2、过滤或萃取方法:

洗涤:
由于脂体及部分破碎的细胞膜及膜蛋白与包涵体粘连在一起,在溶解包涵体之前要先洗涤包涵体,通常用低浓度的变性剂如2M尿素在50mM TrispH7.0-8.5左右,1mMEDTA中洗涤。此外可以用温和去垢剂TritonX-100洗涤去除膜碎片和膜蛋白。

溶解:
常用的变性剂有尿素(8M)、盐酸胍(GdnHCl6-8M),通过离子间的相互作用,破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果少差,异氰硫酸胍(GdnSCN)最强。

去垢剂:如强的阴离子去垢剂SDS,可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白。问题是由于SDS无法彻底的去除而不允许在制药过程中使用。

极端pH:可以破坏蛋白的次级键从而增溶蛋白。如有人在pH>9.0溶解牛生长激素和牛凝乳蛋白酶包涵体。有些蛋白可以溶解在60mMHCl中。这些方法只适合于少部分蛋白的增溶。
变性剂的使用浓度和作用时间:一般在偏碱性性的环境中如pH8.0-9.0,尿素在碱性环境中不稳定,一般不要超过pH1.0。有些蛋白只能用盐酸胍如IL-4。增溶时一般室温过夜,但盐酸胍在37度1小时便可以使多数蛋白完全变性溶解。

还原剂:
由于蛋白间二硫键的存在,在增溶时一般使用还原剂。还原剂的使用浓度一般是50-100mM2-BME或DTT,也有文献使用5mM浓度。在较粗放的条件下,可以使用5ml/l的浓度。还原剂的使用浓度与蛋白二硫键的数目无关,而有些没有二硫键的蛋白加不加还原剂无影响,如牛生长激素包涵体的增溶。对于目标蛋白没有二硫键某些包涵体的增溶,有时还原剂的使用也是必要的,可能由于含二硫键的杂蛋白影响了包涵体的溶解。

复性:
通过缓慢去除变性剂使目标蛋白从变性的完全伸展状态恢复到正常的折叠结构,同时去除还原剂使二硫键正常形成。一般在尿素浓度4M左右时复性过程开始,到2M左右时结束。对于盐酸胍而言,可以从4M开始,到1.5M 时复性过程已经结束。

复性中常采用的方法有:
稀释复性:直接加入水或缓冲液,放置过夜,缺点是体积增加较大,变性剂稀释速度太快,不易控制。
透析复性:好处是不增加体积,通过逐渐降低外透液浓度来控制变性剂去除速度,有人称易形成沉淀,且不适合大规模操作,无法应用到生产规模。
超滤复性:在生产中较多的使用,规模较大,易于对透析速度进行控制,缺点是不适合样品量较少的情况,且有些蛋白可能在超滤过程中不可逆的变性。
柱上复性:是最近研究较多并成功的在生产中应用的一种复性方法,如华北制药的G-CSF复性据说是通过柱上复性进行的。常用于复性的层析方法有SEC、HIC等。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
33
 
还原剂的去除:
还原剂一般和变性剂的去除一起慢慢的氧化去除,使二硫键慢慢形成。但是由于二硫键的形成并不是蛋白质正确折叠所必须的,可以考虑在变性剂完全去除之后,在去除还原剂使已经按照正确的结构相互接近的巯基间形成正确的二硫键。

常用的氧化方法有:
空气氧化法:在碱性条件下通空气,或者加入二价铜离子,能够取得更好的效果,缺点是不易控制氧化还原电势。
氧化还原电对(redox):常采用GSSG/GSH,通过调整两者的比例来控制较精确的氧化还原电势,也可以在添加了还原剂如BME、DTT的增溶液中直接加入GSSG,如:5mMGSSG/2mM DTT=GSH/GSSG(1.33/1)。

复性的效率:
复性是一个非常复杂的过程,除与蛋白质复性的过程控制相关外,还很大程度上与蛋白质本身的性质有关,有些蛋白非常容易复性,如牛胰RNA酶有12对二硫键,在较宽松的条件下复性效率可以达到95%以上,而有一些蛋白至今没有发现能够对其进行复性的方法如IL-11,很多蛋白的复性效率只有百分之零点几。一般说来,蛋白质的复性效率在20%左右。影响复性效率的因素有蛋白质的复性浓度,变性剂的起始浓度和去除速度、温度、pH、氧化还原电势、离子强度、共溶剂和其他添加剂的存在与否等。

复性过程的添加剂:
1、共溶剂:如PEG6000-20000,据说可以可逆的修饰折叠中间体的疏水集团,此外由于阻止了蛋白质分子间的相互接触的机会,也可能对复性效率的提高起作用。一般的使用浓度在0.1%左右,具体条件可根据实验条件确定。
2、二硫键异构酶(PDI)和脯氨酸异构酶(PPI):PDI可以使错配的二硫键打开并重新组合,从而有利于恢复到正常的结构,此外在复性过程中蛋白质的脯氨酸两种构象间的转变需要较高能量,常常是复性过程中的限速步骤,而PPI的作用是促进两种构象间的转变,从而促进复性的进行。
3、分子伴侣,即热休克蛋白(HSP),是一种没有蛋白质特异性的促进折叠的蛋白因子,研究发现很多蛋白在缺乏分子伴侣时无法自己正确的折叠。有人构建了与伴侣分子共同表达的菌株,据说效果不错。不过在生产中还没有看到2和3的应用的例子。
4、0.4-0.6ML-Arg:成功的应用于很多蛋白如t-PA的复性中,可以抑制二聚体的形成。
5、甘油等:增加黏度,减少分子碰撞机会,一般使用浓度在%5-30%。
6、一定的盐浓度,可能是为了降低某些带电集团间的斥力,有利于蛋白质的折叠。
7、辅助因子:添加蛋白质活性状态必须的辅助因子如辅酶辅基等或蛋白配体等很多时候对蛋白质正确的折叠是有利的。
8、色谱法:通过将目标蛋白结合到层析柱上,减少蛋白分子间的相互影响,该方法得到越来越多的应用,常用的色谱有SEC、HIC、IEC、IMAC等。

当然,虽然有很多所谓的理性的复性方案设计,目前的复性工作更多的是一个经验的过程,没有一种通用的方法可以套用。

复性时的蛋白浓度:
一般使用浓度为0.1-1mg/ml,太高的浓度容易形成聚体沉淀,太低的浓度不经济,而且很多蛋白在低浓度时不稳定,很容易变性。

复性效果的检测:
根据具体的蛋白性质和需要,可以从生化、免疫、物理性质等方面对蛋白质的复性效率进行检测。
1、凝胶电泳:一般可以用非变性的聚丙烯酰胺凝胶电泳可以检测变性和天然状态的蛋白质,或用非还原的聚丙烯酰胺电泳检测有二硫键的蛋白复性后二硫键的配对情况。
2、光谱学方法:可以用紫外差光谱、荧光光谱、圆二色性光谱(CD)等,利用两种状态下的光谱学特征进行复性情况的检测,但一般只用于复性研究中的过程检测。
3、色谱方法:如IEX、RP-HPLC、CE等,由于两种状态的蛋白色谱行为不同。
4、生物学活性及比活测定:一般用细胞方法或生化方法进行测定,较好的反映了复性蛋白的活性,值得注意的是,不同的测活方法测得的结果不同,而且常常不能完全反映体内活性。
5、黏度和浊度测定:复性后的蛋白溶解度增加,变性状态时由于疏水残基暴露,一般水溶性很差,大多形成可见的沉淀析出。
6、免疫学方法:如ELISA、WESTERN等,特别是对结构决定簇的抗体检验,比较真实的反映了蛋白质的折叠状态。

几个复性的实例:
1、MHCII JBC 269(47):1994
增溶:16-40mg Protein,8MGdnHCl,16-32mM DTT,1mM EDTA,50mM Tris pH8.037度1hr.
复性:8-16fold dilution to1-5mg/ml Protein.
2、增溶:10mM DTT,0.1%SDS,25mM Tris,200mMGlucine pH8.5.
复性:10倍稀释到10mM DTT,2mMDodOMalt(dodecyl-beta-D-maltoside),150mMNaCl,10mMTris pH8.0.对起始缓冲液密闭透析16hr,开口透析8hr,对150mMNaCl,10mM Tris pH8.0透析48hr。
3、Bovine Prethrombin-2,JBC 270(1):1990 四对二硫键。
增溶:7M GdnHCl,10mMTris pH8.0,1mM EDTA 4mg/ml.
复性:稀释到100mM Na2HPO4,2 mM EDTA,0.1% PEG,0-4M GdnHCl,0.1 mM GSSG,0.2 mM GSH,pH7.4,0.025 mg/ml Protein.RT 24hr.对4L 25mM sodiumphosphate,2mM EDTA,0.1%PEG,pH7.4 透析3次,温度4度。

纯化:
一般说来,复性液的体积较大,为了减少处理体积,在进行柱纯化以前可以先进行硫酸铵沉淀,沉淀在低速离心收集后复溶的盐浓度较高,可以直接进行HIC纯化,目标峰经适当稀释后(cond<5mS/cm)进行IEX纯化,然后通过SEC脱盐,更换缓冲液,除菌过滤后,在质量合格的情况下便可以进入制剂阶段。
当然在复性浓度较高的情况下,也可以直接将复性液进行IEX纯化,优点是在纯化的同时进行体积的浓缩,为以后的精制创造条件。
从生产的角度看,由于每增加一步纯化工序便降低很多收率,所以可过两到三次柱纯化,工艺越简单越有利于收率的提高。当然这只是一个一般的原则,对于纯度要求较高的产品如重组人白蛋白,不得不进行多次纯化。

包涵体:
包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。

包涵体的组成与特性:
一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,难溶与水,只溶于变性剂如尿素、盐酸胍等。

包涵体的形成:
主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。
1、表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。
2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。
3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。
4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。因此有人采用共表达分子伴侣的方法以增加可溶蛋白的比例。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
34
 
包涵体表达的有利因素:
1、可溶性蛋白在细胞内容易受到蛋白酶的攻击,包涵体表达可以避免蛋白酶对外源蛋白的降解。
2、降低了胞内外源蛋白的浓度,有利于表达量的提高。
3、包涵体中杂蛋白含量较低,且只需要简单的低速离心就可以与可溶性蛋白分离,有利于分离纯化。
4、对机械搅拌和超声破碎不敏感,易于破壁,并与细胞膜碎片分离。

破菌:
1、机械破碎
2、超声破碎
3、化学方法破碎

分离:
1、离心:5000-20000g 15min离心,可使大多数包涵体沉淀,与可溶性蛋白分离。
2、过滤或萃取方法:

洗涤:
由于脂体及部分破碎的细胞膜及膜蛋白与包涵体粘连在一起,在溶解包涵体之前要先洗涤包涵体,通常用低浓度的变性剂如2M尿素在50mM Tris pH7.0-8.5左右,1mM EDTA中洗涤。此外可以用温和去垢剂TritonX-100洗涤去除膜碎片和膜蛋白。

溶解:
常用的变性剂有尿素(8M)、盐酸胍(GdnHCl 6-8M),通过离子间的相互作用,破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果少差,异氰硫酸胍(GdnSCN)最强。
去垢剂:如强的阴离子去垢剂SDS,可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白。问题是由于SDS无法彻底的去除而不允许在制药过程中使用。
极端pH:可以破坏蛋白的次级键从而增溶蛋白。如有人在pH>9.0溶解牛生长激素和牛凝乳蛋白酶包涵体。有些蛋白可以溶解在60mM HCl中。这些方法只适合于少部分蛋白的增溶。
变性剂的使用浓度和作用时间:一般在偏碱性性的环境中如pH8.0-9.0,尿素在碱性环境中不稳定,一般不要超过pH1.0。有些蛋白只能用盐酸胍如IL-4。增溶时一般室温过夜,但盐酸胍在37度1小时便可以使多数蛋白完全变性溶解。

还原剂:
由于蛋白间二硫键的存在,在增溶时一般使用还原剂。还原剂的使用浓度一般是50-100mM 2-BME或DTT,也有文献使用5mM浓度。在较粗放的条件下,可以使用5ml/l的浓度。还原剂的使用浓度与蛋白二硫键的数目无关,而有些没有二硫键的蛋白加不加还原剂无影响,如牛生长激素包涵体的增溶。对于目标蛋白没有二硫键某些包涵体的增溶,有时还原剂的使用也是必要的,可能由于含二硫键的杂蛋白影响了包涵体的溶解。

复性:
通过缓慢去除变性剂使目标蛋白从变性的完全伸展状态恢复到正常的折叠结构,同时去除还原剂使二硫键正常形成。一般在尿素浓度4M左右时复性过程开始,到2M 左右时结束。对于盐酸胍而言,可以从4M开始,到1.5M 时复性过程已经结束。
复性中常采用的方法有:
稀释复性:直接加入水或缓冲液,放置过夜,缺点是体积增加较大,变性剂稀释速度太快,不易控制。
透析复性:好处是不增加体积,通过逐渐降低外透液浓度来控制变性剂去除速度,有人称易形成沉淀,且不适合大规模操作,无法应用到生产规模。
超滤复性:在生产中较多的使用,规模较大,易于对透析速度进行控制,缺点是不适合样品量较少的情况,且有些蛋白可能在超滤过程中不可逆的变性。
柱上复性:是最近研究较多并成功的在生产中应用的一种复性方法,如华北制药的G-CSF复性据说是通过柱上复性进行的。常用于复性的层析方法有SEC、HIC等。

还原剂的去除:
还原剂一般和变性剂的去除一起慢慢的氧化去除,使二硫键慢慢形成。但是由于二硫键的形成并不是蛋白质正确折叠所必须的,可以考虑在变性剂完全去除之后,在去除还原剂使已经按照正确的结构相互接近的巯基间形成正确的二硫键。
常用的氧化方法有:
空气氧化法:在碱性条件下通空气,或者加入二价铜离子,能够取得更好的效果,缺点是不易控制氧化还原电势。
氧化还原电对(redox):常采用GSSG/GSH,通过调整两者的比例来控制较精确的氧化还原电势,也可以在添加了还原剂如BME、DTT的增溶液中直接加入GSSG,如:5mM GSSG/2mM DTT=GSH/GSSG(1.33/1)。

复性的效率:
复性是一个非常复杂的过程,除与蛋白质复性的过程控制相关外,还很大程度上与蛋白质本身的性质有关,有些蛋白非常容易复性,如牛胰RNA酶有12对二硫键,在较宽松的条件下复性效率可以达到95%以上,而有一些蛋白至今没有发现能够对其进行复性的方法如IL-11,很多蛋白的复性效率只有百分之零点几。一般说来,蛋白质的复性效率在20%左右。影响复性效率的因素有蛋白质的复性浓度,变性剂的起始浓度和去除速度、温度、pH、氧化还原电势、离子强度、共溶剂和其他添加剂的存在与否等。

复性过程的添加剂:
1、共溶剂:如PEG6000-20000,据说可以可逆的修饰折叠中间体的疏水集团,此外由于阻止了蛋白质分子间的相互接触的机会,也可能对复性效率的提高起作用。一般的使用浓度在0.1%左右,具体条件可根据实验条件确定。
2、二硫键异构酶(PDI)和脯氨酸异构酶(PPI):PDI可以使错配的二硫键打开并重新组合,从而有利于恢复到正常的结构,此外在复性过程中蛋白质的脯氨酸两种构象间的转变需要较高能量,常常是复性过程中的限速步骤,而PPI的作用是促进两种构象间的转变,从而促进复性的进行。
3、分子伴侣,即热休克蛋白(HSP),是一种没有蛋白质特异性的促进折叠的蛋白因子,研究发现很多蛋白在缺乏分子伴侣时无法自己正确的折叠。有人构建了与伴侣分子共同表达的菌株,据说效果不错。不过在生产中还没有看到2和3的应用的例子。
4、0.4-0.6M L-Arg:成功的应用于很多蛋白如t-PA的复性中,可以抑制二聚体的形成。
5、甘油等:增加黏度,减少分子碰撞机会,一般使用浓度在%5-30%。
6、一定的盐浓度,可能是为了降低某些带电集团间的斥力,有利于蛋白质的折叠。
7、辅助因子:添加蛋白质活性状态必须的辅助因子如辅酶辅基等或蛋白配体等很多时候对蛋白质正确的折叠是有利的。
8、色谱法:通过将目标蛋白结合到层析柱上,减少蛋白分子间的相互影响,该方法得到越来越多的应用,常用的色谱有SEC、HIC、IEC、IMAC等。
当然,虽然有很多所谓的理性的复性方案设计,目前的复性工作更多的是一个经验的过程,没有一种通用的方法可以套用。

复性时的蛋白浓度:
一般使用浓度为0.1-1mg/ml,太高的浓度容易形成聚体沉淀,太低的浓度不经济,而且很多蛋白在低浓度时不稳定,很容易变性。

复性效果的检测:
根据具体的蛋白性质和需要,可以从生化、免疫、物理性质等方面对蛋白质的复性效率进行检测。
1、凝胶电泳:一般可以用非变性的聚丙烯酰胺凝胶电泳可以检测变性和天然状态的蛋白质,或用非还原的聚丙烯酰胺电泳检测有二硫键的蛋白复性后二硫键的配对情况。
2、光谱学方法:可以用紫外差光谱、荧光光谱、圆二色性光谱(CD)等,利用两种状态下的光谱学特征进行复性情况的检测,但一般只用于复性研究中的过程检测。
3、色谱方法:如IEX、RP-HPLC、CE等,由于两种状态的蛋白色谱行为不同,
4、生物学活性及比活测定:一般用细胞方法或生化方法进行测定,较好的反映了复性蛋白的活性,值得注意的是,不同的测活方法测得的结果不同,而且常常不能完全反映体内活性。
5、黏度和浊度测定:复性后的蛋白溶解度增加,变性状态时由于疏水残基暴露,一般水溶性很差,大多形成可见的沉淀析出。
6、免疫学方法:如ELISA、WESTERN等,特别是对结构决定簇的抗体检验,比较真实的反映了蛋白质的折叠状态。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
35
 
几个复性的实例:
1、MHCII JBC 269(47):1994
增溶:16-40mg Protein,8M GdnHCl,16-32mM DTT,1mM EDTA,50mM Tris pH8.0 37度1hr.
复性:8-16fold dilution to 1-5mg/ml Protein.
2、增溶:10mM DTT,0.1%SDS,25mM Tris,200mM Glucine pH8.5.
复性:10倍稀释到10mM DTT,2mM DodOMalt(dodecyl-beta-D-maltoside),150mM NaCl,10mM Tris pH8.0.对起始缓冲液密闭透析16hr,开口透析8hr,对150mM NaCl,10mM Tris pH8.0 透析48hr。
3、Bovine Prethrombin-2,JBC 270(1):1990 四对二硫键。
增溶:7M GdnHCl,10mM Tris pH8.0,1mM EDTA 4mg/ml.
复性:稀释到100mM Na2HPO4,2mM EDTA,0.1%PEG,0-4M GdnHCl,0.1mM GSSG,0.2mM GSH,pH7.4,0.025mg/ml Protein.RT 24hr.对4L 25mM sodium phosphate,2mM EDTA,0.1% PEG,pH7.4 透析3次,温度4度。

纯化:
一般说来,复性液的体积较大,为了减少处理体积,在进行柱纯化以前可以先进行硫酸铵沉淀,沉淀在低速离心收集后复溶的盐浓度较高,可以直接进行HIC纯化,目标峰经适当稀释后(cond<5mS/cm)进行IEX纯化,然后通过SEC脱盐,更换缓冲液,除菌过滤后,在质量合格的情况下便可以进入制剂阶段。
当然在复性浓度较高的情况下,也可以直接将复性液进行IEX纯化,优点是在纯化的同时进行体积的浓缩,为以后的精制创造条件。
从生产的角度看,由于每增加一步纯化工序便降低很多收率,所以可以接受的工艺一般要经过两到三次柱纯化,工艺越简单越有利于收率的提高。当然这只是一个一般的原则,对于纯度要求较高的产品如重组人白蛋白,不得不进行多次纯化。


蛋白的复性是一个世界性的难题,没有通用的方法,甚至没有靠得住的规律,只能试。

可以参考以下文章。该文出处已经忘了,如果有人知道原创作者或网上出处,请补充。

包涵体表达的蛋白的复性包涵体表达的蛋白的复性

包涵体:
包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。

包涵体的组成与特性:
一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1um,难溶与水,只溶于变性剂如尿素、盐酸胍等。

包涵体的形成:
主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。
1、表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。
2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。
3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。
4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。因此有人采用共表达分子伴侣的方法以增加可溶蛋白的比例。

包涵体表达的有利因素:
1、可溶性蛋白在细胞内容易受到蛋白酶的攻击,包涵体表达可以避免蛋白酶对外源蛋白的降解。
2、降低了胞内外源蛋白的浓度,有利于表达量的提高。
3、包涵体中杂蛋白含量较低,且只需要简单的低速离心就可以与可溶性蛋白分离,有利于分离纯化。
4、对机械搅拌和超声破碎不敏感,易于破壁,并与细胞膜碎片分离。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
36
 
破菌:
1、机械破碎
2、超声破碎
3、化学方法破碎

分离:
1、离心:5000-20000g15min离心,可使大多数包涵体沉淀,与可溶性蛋白分离。
2、过滤或萃取方法:

洗涤:
由于脂体及部分破碎的细胞膜及膜蛋白与包涵体粘连在一起,在溶解包涵体之前要先洗涤包涵体,通常用低浓度的变性剂如2M尿素在50mM TrispH7.0-8.5左右,1mMEDTA中洗涤。此外可以用温和去垢剂TritonX-100洗涤去除膜碎片和膜蛋白。

溶解:
常用的变性剂有尿素(8M)、盐酸胍(GdnHCl6-8M),通过离子间的相互作用,破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果少差,异氰硫酸胍(GdnSCN)最强。

去垢剂:如强的阴离子去垢剂SDS,可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白。问题是由于SDS无法彻底的去除而不允许在制药过程中使用。

极端pH:可以破坏蛋白的次级键从而增溶蛋白。如有人在pH>9.0溶解牛生长激素和牛凝乳蛋白酶包涵体。有些蛋白可以溶解在60mMHCl中。这些方法只适合于少部分蛋白的增溶。
变性剂的使用浓度和作用时间:一般在偏碱性性的环境中如pH8.0-9.0,尿素在碱性环境中不稳定,一般不要超过pH1.0。有些蛋白只能用盐酸胍如IL-4。增溶时一般室温过夜,但盐酸胍在37度1小时便可以使多数蛋白完全变性溶解。

还原剂:
由于蛋白间二硫键的存在,在增溶时一般使用还原剂。还原剂的使用浓度一般是50-100mM2-BME或DTT,也有文献使用5mM浓度。在较粗放的条件下,可以使用5ml/l的浓度。还原剂的使用浓度与蛋白二硫键的数目无关,而有些没有二硫键的蛋白加不加还原剂无影响,如牛生长激素包涵体的增溶。对于目标蛋白没有二硫键某些包涵体的增溶,有时还原剂的使用也是必要的,可能由于含二硫键的杂蛋白影响了包涵体的溶解。

复性:
通过缓慢去除变性剂使目标蛋白从变性的完全伸展状态恢复到正常的折叠结构,同时去除还原剂使二硫键正常形成。一般在尿素浓度4M左右时复性过程开始,到2M左右时结束。对于盐酸胍而言,可以从4M开始,到1.5M 时复性过程已经结束。

复性中常采用的方法有:
稀释复性:直接加入水或缓冲液,放置过夜,缺点是体积增加较大,变性剂稀释速度太快,不易控制。
透析复性:好处是不增加体积,通过逐渐降低外透液浓度来控制变性剂去除速度,有人称易形成沉淀,且不适合大规模操作,无法应用到生产规模。
超滤复性:在生产中较多的使用,规模较大,易于对透析速度进行控制,缺点是不适合样品量较少的情况,且有些蛋白可能在超滤过程中不可逆的变性。
柱上复性:是最近研究较多并成功的在生产中应用的一种复性方法,如华北制药的G-CSF复性据说是通过柱上复性进行的。常用于复性的层析方法有SEC、HIC等。

还原剂的去除:
还原剂一般和变性剂的去除一起慢慢的氧化去除,使二硫键慢慢形成。但是由于二硫键的形成并不是蛋白质正确折叠所必须的,可以考虑在变性剂完全去除之后,在去除还原剂使已经按照正确的结构相互接近的巯基间形成正确的二硫键。

常用的氧化方法有:
空气氧化法:在碱性条件下通空气,或者加入二价铜离子,能够取得更好的效果,缺点是不易控制氧化还原电势。
氧化还原电对(redox):常采用GSSG/GSH,通过调整两者的比例来控制较精确的氧化还原电势,也可以在添加了还原剂如BME、DTT的增溶液中直接加入GSSG,如:5mMGSSG/2mM DTT=GSH/GSSG(1.33/1)。

复性的效率:
复性是一个非常复杂的过程,除与蛋白质复性的过程控制相关外,还很大程度上与蛋白质本身的性质有关,有些蛋白非常容易复性,如牛胰RNA酶有12对二硫键,在较宽松的条件下复性效率可以达到95%以上,而有一些蛋白至今没有发现能够对其进行复性的方法如IL-11,很多蛋白的复性效率只有百分之零点几。一般说来,蛋白质的复性效率在20%左右。影响复性效率的因素有蛋白质的复性浓度,变性剂的起始浓度和去除速度、温度、pH、氧化还原电势、离子强度、共溶剂和其他添加剂的存在与否等。

复性过程的添加剂:
1、共溶剂:如PEG6000-20000,据说可以可逆的修饰折叠中间体的疏水集团,此外由于阻止了蛋白质分子间的相互接触的机会,也可能对复性效率的提高起作用。一般的使用浓度在0.1%左右,具体条件可根据实验条件确定。
2、二硫键异构酶(PDI)和脯氨酸异构酶(PPI):PDI可以使错配的二硫键打开并重新组合,从而有利于恢复到正常的结构,此外在复性过程中蛋白质的脯氨酸两种构象间的转变需要较高能量,常常是复性过程中的限速步骤,而PPI的作用是促进两种构象间的转变,从而促进复性的进行。
3、分子伴侣,即热休克蛋白(HSP),是一种没有蛋白质特异性的促进折叠的蛋白因子,研究发现很多蛋白在缺乏分子伴侣时无法自己正确的折叠。有人构建了与伴侣分子共同表达的菌株,据说效果不错。不过在生产中还没有看到2和3的应用的例子。
4、0.4-0.6ML-Arg:成功的应用于很多蛋白如t-PA的复性中,可以抑制二聚体的形成。
5、甘油等:增加黏度,减少分子碰撞机会,一般使用浓度在%5-30%。
6、一定的盐浓度,可能是为了降低某些带电集团间的斥力,有利于蛋白质的折叠。
7、辅助因子:添加蛋白质活性状态必须的辅助因子如辅酶辅基等或蛋白配体等很多时候对蛋白质正确的折叠是有利的。
8、色谱法:通过将目标蛋白结合到层析柱上,减少蛋白分子间的相互影响,该方法得到越来越多的应用,常用的色谱有SEC、HIC、IEC、IMAC等。

当然,虽然有很多所谓的理性的复性方案设计,目前的复性工作更多的是一个经验的过程,没有一种通用的方法可以套用。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
37
 
复性时的蛋白浓度:
一般使用浓度为0.1-1mg/ml,太高的浓度容易形成聚体沉淀,太低的浓度不经济,而且很多蛋白在低浓度时不稳定,很容易变性。

复性效果的检测:
根据具体的蛋白性质和需要,可以从生化、免疫、物理性质等方面对蛋白质的复性效率进行检测。
1、凝胶电泳:一般可以用非变性的聚丙烯酰胺凝胶电泳可以检测变性和天然状态的蛋白质,或用非还原的聚丙烯酰胺电泳检测有二硫键的蛋白复性后二硫键的配对情况。
2、光谱学方法:可以用紫外差光谱、荧光光谱、圆二色性光谱(CD)等,利用两种状态下的光谱学特征进行复性情况的检测,但一般只用于复性研究中的过程检测。
3、色谱方法:如IEX、RP-HPLC、CE等,由于两种状态的蛋白色谱行为不同。
4、生物学活性及比活测定:一般用细胞方法或生化方法进行测定,较好的反映了复性蛋白的活性,值得注意的是,不同的测活方法测得的结果不同,而且常常不能完全反映体内活性。
5、黏度和浊度测定:复性后的蛋白溶解度增加,变性状态时由于疏水残基暴露,一般水溶性很差,大多形成可见的沉淀析出。
6、免疫学方法:如ELISA、WESTERN等,特别是对结构决定簇的抗体检验,比较真实的反映了蛋白质的折叠状态。

几个复性的实例:
1、MHCII JBC 269(47):1994
增溶:16-40mg Protein,8MGdnHCl,16-32mM DTT,1mM EDTA,50mM Tris pH8.037度1hr.
复性:8-16fold dilution to1-5mg/ml Protein.
2、增溶:10mM DTT,0.1%SDS,25mM Tris,200mMGlucine pH8.5.
复性:10倍稀释到10mM DTT,2mMDodOMalt(dodecyl-beta-D-maltoside),150mMNaCl,10mMTris pH8.0.对起始缓冲液密闭透析16hr,开口透析8hr,对150mMNaCl,10mM Tris pH8.0透析48hr。
3、Bovine Prethrombin-2,JBC 270(1):1990 四对二硫键。
增溶:7M GdnHCl,10mMTris pH8.0,1mM EDTA 4mg/ml.
复性:稀释到100mM Na2HPO4,2 mM EDTA,0.1% PEG,0-4M GdnHCl,0.1 mM GSSG,0.2 mM GSH,pH7.4,0.025 mg/ml Protein.RT 24hr.对4L 25mM sodiumphosphate,2mM EDTA,0.1%PEG,pH7.4 透析3次,温度4度。

纯化:
一般说来,复性液的体积较大,为了减少处理体积,在进行柱纯化以前可以先进行硫酸铵沉淀,沉淀在低速离心收集后复溶的盐浓度较高,可以直接进行HIC纯化,目标峰经适当稀释后(cond<5mS/cm)进行IEX纯化,然后通过SEC脱盐,更换缓冲液,除菌过滤后,在质量合格的情况下便可以进入制剂阶段。
当然在复性浓度较高的情况下,也可以直接将复性液进行IEX纯化,优点是在纯化的同时进行体积的浓缩,为以后的精制创造条件。
从生产的角度看,由于每增加一步纯化工序便降低很多收率,所以可过两到三次柱纯化,工艺越简单越有利于收率的提高。当然这只是一个一般的原则,对于纯度要求较高的产品如重组人白蛋白,不得不进行多次纯化。

摘要 基因重组蛋白在大肠杆菌中表达时,由于表达量高,往往形成无生物活性的包涵体。包涵体必须经过变性和复性的过程才能获得有活性的重组蛋白。如何提高基因重组蛋白质的复性率,是生物工程技术的一个研究热点。对近年来的重组蛋白质的复性方法做一评述,为研究蛋白质折叠以及复性技术的进一步应用提供依据。
关键词 重组蛋白 包涵体 复性 二硫键

到目前为止,人们表达的重组蛋白质已有4000多种,其中用E.coli表达的蛋白质要占90%以上,尽管基因重组技术为大规模生产目标蛋白质提供了崭新的途径,然而人们在分离纯化时却遇到了意想不到的困难,即这些蛋白质在E.coli中绝大多数是以包涵体形式存在,重组蛋白不仅不能分泌到细胞外,反而在细胞内聚集成没有生物活性的直径约0.1~3.0μm的固体颗粒[1]。自从应用大肠杆菌体系表达基因工程产品以来,人们就一直期望得到高活性、高产量的重组蛋白。不可溶、无生物活性的包涵体必须经过变性、复性才能获得天然结构以及生物活性,因此应该选择一个合适的复性过程来实现蛋白质的正确折叠,获得生物活性,近年来的研究可以使复杂的疏水蛋白、多结构域蛋白、寡聚蛋白、含二硫键蛋白在体外成功复性。

包涵体形成的原因

重组蛋白在宿主系统中高水平表达时,无论是原核表达体系或真核表达体系甚至高等真核表达体系,都会形成包涵体[2]。主要因为在重组蛋白的表达过程中,缺乏某些蛋白质折叠过程中需要的酶和辅助因子,或环境不适,无法形成正确的次级键等原因形成的[3]。

1、 表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。

2、 重组蛋白的氨基酸组成,一般说来含硫氨基酸越多越容易形成包涵体。

3、 重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。

4、 重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。

5、 有报道认为,丰富的培养基有利于活性蛋白质的表达,当培养条件不佳时,容易形成包涵体。

减少包涵体形成的策略

1、 降低重组菌的生长温度,降低培养温度是减少包涵体形成的最常用的方法,较低的生长温度降低了无活性聚集体形成的速率和疏水相互作用,从而可减少包涵体的形成[4]。

2、 添加可促进重组蛋白质可溶性表达的生长添加剂,培养E.coli时添加高浓度的多醇类、蔗糖或非代谢糖可以阻止分泌到周质的蛋白质聚集反应,在最适浓度范围内添加这些添加剂不会影响细胞的生长、蛋白质的合成或运输,其它促重组蛋白质可溶性表达的生长添加剂还有乙醇(诱导热休克蛋白的表达)、低分子量的巯基或二硫化合物(影响细胞周质的还原态,从而影响二硫键的形成)和NaCl[5]。

3、 供给丰富的培养基,创造最佳培养条件,如供氧、pH等。
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
38
 
包涵体的分离及溶解

对于生物制药工业来说,包涵体的形成也是有利的,不仅可获得高表达、高纯度的重组蛋白质,还可避免细胞水解酶对重组蛋白质的破坏。由于包涵体是蛋白质聚集而成的致密颗粒,分离的第一步是对培养收集的细胞进行破碎,比较有效的方法是高压匀浆结合溶菌酶处理,然后5000~20000g离心,可使大部分包涵体沉淀,与可溶性蛋白分离,接着,包涵体沉淀需用去污剂(Triton X-100或脱氧胆酸钠)和低浓度变性剂(2mol/L尿素或盐酸胍等)洗涤除去脂类和膜蛋白,这一步很重要,否则会导致包涵体溶解和复性的过程中重组蛋白质的降解[6、7、8]。

包涵体的溶解必须用很强的变性剂,如8mol/L尿素、6~8mol/L盐酸胍,通过离子间的相互作用破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果稍差,异氰盐酸胍最强;去污剂,如SDS[7],可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白,但由于无法彻底去除而不允许用在制药行业中;酸,如70%甲酸[9],可以破坏蛋白的次级键从而增溶蛋白,这种方法只适合少数蛋白质。对于含有半胱氨酸的蛋白,在增溶时应加入还原剂(如DTT、GSH、β-ME)打开蛋白质中所有二硫键,对于目标蛋白没有二硫键的有时也应使用还原剂,为含二硫键的杂蛋白会影响包涵体的溶解,同时还应加入金属螯合剂,如EDTA或EGTA,用来螯合Cu2+、Fe3+等金属离子与还原状态的巯基发生氧化反应[10]。



蛋白质的折叠机理

包涵体蛋白在变性剂作用下,为可溶性伸展态,在变性剂去除或浓度降低时,就会自发的从变性的热不稳状态向热力学稳定状态转变,形成具有生物活性的天然结构[11]。然而在去除变性剂的同时,重组蛋白质在体外折叠,分子间存在大量错误折叠和聚合,复性效率往往很低,包涵体蛋白折叠复性的效率实际上取决于正确折叠过程与聚集过程之间的竞争[1]。对于蛋白质的折叠机制,目前有多种不同的假设,但很多学者认为有一个“熔球态”的中间状态,在“熔球态”中,蛋白质的二级结构已经基本形成,其空间结构也初具规模,再做一些局部调整就可形成正确的立体结构,总之,蛋白质的具体步骤可用下式描述[12、13、14]:

伸展态→中间体→后期中间体→天然态



聚集体

在折叠反应中,从伸展态到中间体的速度是非常快的,只需要几毫秒,但从中间体转变为天然态的过程比较缓慢,是一个限速过程。聚集过程与复性过程相互竞争,故而应尽量避免聚集体的产生。一般认为,蛋白质在复性过程中涉及两种疏水作用,一是分子内的疏水相互作用,可促进蛋白质正确折叠;一是部分折叠的肽链分子间的疏水相互作用,在复性过程中,部分折叠的中间体的疏水簇外露,分子间的疏水相互作用会导致蛋白质聚集。蛋白质的立体结构虽然由其氨基酸的顺序决定,然而伸展肽链折叠为天然活性结构的过程还受到周围环境的影响,如温度、pH值、离子强度、复性时间等因素的影响。

提高重组蛋白质折叠复性的方法

一个有效的、理想的折叠复性方法应具备以下几个特点:活性蛋白质的回收率高;正确复性的产物易于与错误折叠蛋白质分离;折叠复性后应得到浓度较高的蛋白质产品;折叠复性方法易于放大;复性过程耗时较少[15]。

1、 透析、稀释和超滤复性法:这三种方法是最传统也是应用最普遍的蛋白质折叠复性方法,复性活性回收率低,而且难于与杂蛋白分离。透析法耗时长,易形成无活性蛋白质聚集体;超滤法在膜上聚集变性,易造成膜污染;稀释法处理量太大,不利于工业放大[16]。

2、 高蛋白浓度下的复性方法:一个成功的复性过程在于能够在高蛋白浓度下仍能得到较高的复性率。一个方法是把变性蛋白缓慢连续或不连续地加入到复性液中[17]。在两次蛋白加入之间,应有足够的时间间隔使蛋白质折叠通过了易聚集的中间体阶段。这是由于完全折叠的蛋白通常不会与正在折叠的蛋白一起聚集。第二种方法是用温度跳跃策略[4]。变性蛋白在低温下复性折叠以减少聚集,直到易聚集的中间体大都转化为不易聚集的后期中间体后,温度快速升高来促进后期中间体快速折叠为蛋白的天然构象。第三种方法是复性在中等的变性剂浓度下进行[18],变性剂浓度应高到足以有效防止聚集,同时又必须低到能够引发正确复性。

3、 添加促进剂的复性方法:包涵体蛋白质折叠复性促进剂的促进作用可以分为:稳定正确折叠蛋白质的天然结构、改变错误折叠蛋白质的稳定性、增加折叠复性中间体的溶解性、增加非折叠蛋白质的溶解性。通常使用的添加剂有:a、共溶剂:如PEG6000~20000,通过与中间体特异的形成非聚集的复合物,可以阻止蛋白质分子间的相互碰撞机会,减少蛋白质的聚集;b、去污剂及表面活性剂:如Trition X-100、CHAPs、磷脂、磺基甜菜碱等对蛋白质复性有促进作用,但它们能与蛋白质结合,很难去除;c、氧化-还原剂:对于含有二硫键的蛋白,复性过程中应加入氧化还原体系,如GSH/GSSG、DTT/GSSG、DTE/GSSG等,氧化还原系统通过促进不正确形成的二硫键快速交换反应,提高了正确配对的二硫键的产率[19];d、小分子的添加剂:如盐酸胍或尿素、烷基脲、碳酸酰胺类等,都可阻止蛋白聚集,它们的作用可能为:稳定蛋白的活性状态、降低非正确折叠的稳定性、增加折叠中间体的稳定性、增加解折叠状态的稳定性。e、0.4~0.6M L-Arg:L-Arg能使得不正确折叠的蛋白质结构以及不正确连接的二硫键变得不稳定,使折叠向正确方向进行,可大幅度地提高包涵体蛋白质的折叠效率。f、添加分子伴侣和折叠酶:分子伴侣是指能够结合和稳定另外一种蛋白质的不稳定构象,并能通过有控制的结合和释放,促进新生多肽链的折叠、多聚体的装配或降解及细胞器蛋白的跨膜运输的一类蛋白质[20]。折叠酶有二硫键异构酶、脯氨酸异构酶等。分子伴侣和折叠酶都能在体外调节蛋白质的正确折叠,提高蛋白质的合成效率。但这类蛋白在折叠复性后要除去,而且十分昂贵,因此采用可回收利用的方法如固定化法为好。g、人工伴侣[21]:为模仿分子伴侣而发展的一种方法:首先,变性蛋白被复性液中的去污剂捕获,形成蛋白-去污剂复合体,复合体的形成抑制了蛋白的聚集,然后加入环糊精从复合体中去除去污剂,使得蛋白质正确折叠。h、单克隆抗体[22]:待折叠复性的蛋白质的抗体可有效协助复性,但只限于此蛋白才能获得明显的助折叠作用。I其它:多聚离子化合物如肝素可以促进蛋白质的复性,具有稳定天然蛋白质的作用;甘油可以增加黏度,减少分子碰撞的机会,减少错配以提高复性效率;适量的盐浓度可以降低某些带电基团间的斥力,有利于蛋白质的折叠;辅助因子、短链醇、高渗物等能有效的降低聚集体的形成,对蛋白有稳定的作用。jklmn


顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
39
 
4、 液相色谱(LC)复性法:液相色谱是一种最有效的纯化蛋白质的方法,已成为基因重组蛋白质纯化的必不可少的手段,现有报道,疏水相互作用色谱(HIC)[23]、离子交换色谱(IEC)[24]、凝胶排阻色谱(SEC)[25]、亲和色谱(AFC)[26]已成功的对变性蛋白进行了复性。与传统的稀释法和透析法相比,液相色谱复性的优点是:在进样后可很快的除去变性剂;由于色谱固定相对变性蛋白质的吸附可明显的减少、甚至完全消除变性蛋白质分子在脱离变性剂环境后的分子聚集,从而避免了沉淀的产生,提高蛋白质复性的质量和活性回收率;在蛋白质复性的同时,可使目标蛋白质与杂蛋白分离达到纯化的目的,使复性和纯化同时进行;便于回收变性剂,降低废水处理成本。4种色谱法,SEC的分离效果是LC中最差的,盐酸胍会在IEC柱上保留,与蛋白一起洗脱下来,AFC使用范围窄、所需时间长、价格昂贵,HIC是其中较为理想的。变性蛋白在HIC上的复性机理为:当蛋白质、变性剂和杂蛋白进入HIC系统后,由于变性剂在柱子上的作用力较弱,变性蛋白质的作用力较强,变性剂首先同变性的蛋白质分离,随流动相一起流出色谱柱,又因HIC固定相能提供较常法高出十至数百倍的能量*,在变性蛋白质被HIC固定相吸附的同时瞬时除去以水合状态附着在蛋白质表面和与固定相表面接触区域的小分子*,而蛋白质的特定的疏水性氨基酸残基与HIC固定相表面作用以形成区域立体结构,接着形成折叠中间体,随着流动相的不断变化,变性蛋白质不断地在固定相表面上进行吸附-解吸附-再吸附,并在此过程中逐渐被复性,形成与天然蛋白质构象相同的蛋白质,并流出色谱柱。HIC固定相是从高盐溶液中吸附变性蛋白质,且与变性剂瞬时分离,不仅大大降低了蛋白质间的聚集作用,还因固定相在分子水平上为变性蛋白提供里很高的能量,使水化的变性蛋白质瞬时失水,并形成局部结构以利于蛋白质从疏水核开始折叠。HIC在蛋白质复性的同时还能与其它杂蛋白进行很好的分离,且HIC柱便宜、快速,故有很好的发展潜力。

5、 反胶束复性法[27]:由于蛋白质在反胶束内水相中可以保持其构象和活性,运用相转移技术可以将蛋白质分子包于反胶束内,由于这样可使蛋白质相互分离,减少了蛋白质折叠过程中的聚集作用,通过逐渐降低变性剂的浓度和加入氧化-还原剂,可使变性蛋白质复性,但表面活性剂对蛋白质具有变性作用。

6、 双水相复性法[15]:Forciniti用硫氰化钠、氯化钠、溴化锂与聚乙二醇构成的双水相系统使得包涵体的溶解与蛋白质的折叠复性在一步双水相技术操作中完成。由于PEG具有稳定蛋白质构象的作用、高浓度盐则具有去稳定的作用,这样正确折叠的蛋白质会不断进入到另一相中,直到蛋白质的折叠与去折叠达到一个平衡。

蛋白质知道如何折叠,但我们对蛋白质折叠和聚集的机制尚不十分清楚,每种蛋白质都有自己特有的折叠方式和途径,因此对某种蛋白质的复性必须反复试验,利用折叠和聚集的知识建立相对优化、适合生产规模的方法。

参考文献

[1]Lilie H, Schwarz E, Rudolph R.Advances in refolding of proteins produced in E.Coli . Curr Opin Biotechnol,1998,9(5):497-501

[2]Gribskov M, Burgess RR. Overexpression and purification of the sigma subunit of E.coil RNA polymerase. Gene,1983,26:109

[3]Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E.coli. Curr Opin Biot,1998,9:442

[4]Xie Y, Wetlaufer D B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci,1996,5(3):517-523

[5]Georgious G, Valax P.Expression of correctly folded protein in E.Coli. Curr Opin Biotechnol,1996,7(2):190-197

[6]Rudolph R,Bohm G, lilie H, et al. Folding proteins. In:Creighton T E ed. Protein Function: A Practical Approach, 2nd.New York: IRL,1997,57-99

[7]CowleyDT, MackinRB. Expression, purification and charaterization of recombinant human proinsulin. FEBS Lett,1997,402:124

[8]Kuruez I,Titus JA, Jost CA. Correct disulphide pairing and efficient refolding of detergent-solubilized single chain Fv proteins from bacterial inclusion bodies.Mol Immunol,1995,12:1443

[9]Stockel J, Doring K, Malotka J. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimer classⅡ major histocompatibility complex molecular. Eur J Biochem,1997,248:684

[10]Builder S, Hart R, Lester P,et al. Refolding of misfolded insulin-like growth factor-I. US patent,PN 5 663 304,1997-09-02

[11]Zhao Qin-yi.Irreversible Thermodynamic Theory for Protein Folding and Protein thermodynamic Structures. Prog.Biochem Biophys,2001,28(3):429-435

[13]Kiefhaber T, Rudolph R,Kohler H-H et al. Protein aggregation in vitro and in vivo:a quantitative model of the kinetic competition between folding ang aggregation. Biol Technology,1991,9:825-2-829

[14]Yeh Sih, Rousseau D. Folding intermediates in cytochrome c. Natu Stru Biol,1998,5(3):222

[15]Creighton TE. How important is the molten globule for correct protein folding?Trends Biochem Sci,1997,22:6

[16]Forciniti D. Protein refolding using aqueous two-phase systems.J Chromatography A,1994,668(1):95-100
顶部
ukonptp[使用道具]
四级
Rank: 4


UID 103464
精华 5
积分 796
帖子 992
信誉分 110
可用分 5846
专家分 50
阅读权限 255
注册 2013-1-11
状态 离线
40
 
[17]de Bernardez C E. Refolding of recobinant proteins. Curr Opin Biotechnol,1998,9(2):157-163

[18]Hevehan D L,Clark E D B.Oxidative renaturation of lysizyme at high concentration. Biotechnol Bioeng,1997,54:221-230

[19]Maeda Y, Ueda T, Imoto T. Effective renaturation of denatured antibody improve its in vivo folding.Protein Eng,1995,8:81-89

[20]Simmons T,Newhous Y M, Arnold K S et al . Human low density lipoprotein receptor fragment successful refolding of a functionally active ligand-binding domain produced in E.coli.J Biol Chem,1997,272(41):25531-25536

[21]Rozema D,Gellman S H. Artificial chaperone-assisted refolding of denatured-reduced lysizyme:modulation of the competition between renaturation and aggregation . Biochemistry,1996,35(49):15760-15771

[22]Sadana A.Protein refolding and inactivation during bioseparation:bioprocessing implications.Biotech Bioeng,1995,48(5):481-489

[23]Geng X,Chang X.J Chromatogr,1992,599:185-194

[24]Suttnar J,Dyr J E,Hamsikova E et al. J Chromatogr B,1994,656(1):123-126

[25] Werner M H,Clore G M,Gronenborn A M et al . FEBS Lett,1994,345(2-3):125-130

[26] Taguchi H,Makino Y,Yoshida M.J Biol Chem,1994,269:8529-8634

[27]Hagen A J,Hatton T A, Wang D I C. Protein refolding in reverse micelles.Biotech Bioeng,1989,35(4):955-965
顶部