光电直读光谱 » 讨论区 » 经验共享 » 分享:光电直读光谱分析条件的选择

采购询价

点击提交代表您同意 《用户服务协议》 《隐私政策》

 
需要登录并加入本群才可以回复和发新贴

标题:分享:光电直读光谱分析条件的选择

fancy077[使用道具]
四级
Rank: 4


UID 33129
精华 1
积分 507
帖子 221
信誉分 110
可用分 1446
专家分 28
阅读权限 255
注册 2010-1-29
状态 离线
1
 

分享:光电直读光谱分析条件的选择

 §6—5 光电直读光谱分析条件的选择

  §6—5—1 光源参数

  发射光谱分析的准确度和灵敏度和光源的条件密切相联。而只有对光源条件进行试验后,才能确定选择出各钢种的最佳分析条件。电容、电感、电阻的作用,已在讲光源时叙述过。这三个电学参数对分析元素的再现性是很重要的。现生产的光电直读分析的光源参数,生产厂已调整好了,因此可改变的参数就是放电次数。

  §6—5—2 电极间距的选择

  激发对电极间距的大小对分析精度是有很大影响的,电极间距过大稳定性差,又难于激发,精度差。电极间距较小,固然激发容易,可是随着放电次数的增加,辅助电极凝聚物质增加,容易造成长尖使得间距变小,这样也会影响分析精度,特别是向距变化敏感的分析元素分析精度更差。所以电极间距不能过大也不能过小,一般分析间隙采用4-5毫米。

  §6—5—3 氩气流量的选择

  发射光谱分析的准确度和灵敏度与分析间隙中的激发气氛有很大关系。火花室中的空气(主要是O2,N2和水蒸汽)对紫外光有强烈的吸收作用,使谱线的强度变弱,分析灵敏度下降,同时在激发过程中由于选择性氧化,产生第三元素的影响,也使分析再现性变差。

  激发过程中产生的大量金属蒸汽,容易污染聚光镜和火花室,也会影响分析精度。

  为了在分析各种合金元素,同时分析碳、磷、硫元素,它们的分析波长分别为 C193.1nm, P178.3nm、S180.7nm,避免空气的影响,激发放电过程要在惰性气体氩气气氛中进行。同时激发过程中生成的金属蒸气排出火花室。钢种不同对氩气纯度要求不同,氩气的流量、压力不仅需要合适而且要稳定。否则会得不到满意的分析结果。氩气流量小,不能排除火花室中的空气和试样激发分解出来的含氧化物结果会引起扩散放电,因此氩气流量不能过小。氩气流量过大,使激发样品的火花产生跳动,同时造成费氩。

  一般大流量冲洗为5-8升/分,激发流量 3-5升/升,惰性流量为0.5升/分~1升/分。

  §6—5—4 予燃时间和曝光时间的选择

  在光电光谱分析中,对试样的激发需要一段予燃时间。试样在充有氩气的火花室中激发,空气绝大部分被赶跑,所以激发放电中选择性氧化的影响、氧化吸收紫外线的影响就比较小,但依然存在着复杂的物理化学过程,如蒸发、扩散的过程等。必须经过一定的时间后,才能达到稳定的放电,即各元素谱线的绝对强度和相对强度更趋于稳定,此过程称为予燃阶段。但这个过程要比在空气中短些。并且对于不同的钢种,不同的元素的予燃曲线是不一样的。

  对于予燃时间的选择可以采用描迹法和积分法来确定。描迹法是做出各元素的予燃曲线,综合兼顾每个元素达到稳定的时间、确定共同的予燃时间。积分法是在不同的予燃时间下,反复激发试样,观察其各元素分析结果的再现性,从而选出适当的予燃时间。

  对于中低合金钢予燃时间可选4—6秒;

  高合金钢的予燃时间可选5—8秒;

  易切削钢的预燃时间可为10— 30秒。

  但必须指出予燃时间的长短与光源性能有关,能量大的,予燃时间就会短些。

  曝光时间的确定,主要取决于激发样品中元素分析的再现性好坏。曝光过程是光电流向积分电容中充电(也称积分)过程。积分的结果可认为是取光电流的平均值,所以积分时间不要过短。为了保证分析精度,使火花放电的总次数在2000--3000次左右。使铁和分析元素的光强值和比值比较适中。

  在正常分析时,曝光时间一般采用3—5秒。但必须指出,曝光时间长短与光源的能量大小有关。

  §6—5—5 激发电极的选择

  发射光谱分析用的激发电极种类很多,有碳,铜、铝、钨、银…根据分析方法、分析对象而选用不同的激发电极。选择的原则是要较好的分析精密度。被分析的元素不应在激发电极材料中。电侵蚀要小。

  在光电光谱分析时,还要连续多次使用,以便提高分析速度。

  用银做激发电极时,容易得到纯度高的银,由于银的熔点高,热容量和导热性能好;有良好的导电性和抗腐蚀性强。在做钢铁分析时,一般钢中不含银,因此用银做激发电极分析精密度比较高。银电极头须车成园锥体,顶端成90‘角。

  但用单向放电的激发光源,在放电时激发电极易被侵蚀,因此采用钨棒作激发电极,用钨电极一般不容易长尖,一般可连续使用数百次也不要清理电极一次。
顶部
fancy077[使用道具]
四级
Rank: 4


UID 33129
精华 1
积分 507
帖子 221
信誉分 110
可用分 1446
专家分 28
阅读权限 255
注册 2010-1-29
状态 离线
2
 
§6—5—6 内标元素线的选择 

 不管使用什么样的光源,从试样进入火花间隙的原子是不可能等量;每次激发原子尽管相同,但由于光源稍有漂移,故得到的谱线强度不可能得到再现。因此,我们试图绘制钢中Ni谱线的光强与含量百分数的关系曲线时,会发现变动系数可能等于或大于5%,我们则希望优于1%的准确度。

  在照相光谱分析方法中,变化因素很多,由于应用“内标法”的方法,就可明显地补偿了这些变化因素,提高了分析精密度。如果不是测量INi,是比值 INi/IFe。即镍谱线强度除以铁谱线强度。并且用镍的强度比值和含量绘制成关系曲线,我们就会得到很好的在现性。钢中采用的铁谱线称为“内标线”。铁当然是内标元素。

  对于分析任务不同,选择的内标元素也是不同。分析铜合金时,我们采用铜为内标元素。分析镍合金时,采用镍为内标元素。分析铝合金时,采用铝为内标元素。

  生产厂根据用户的生产任务可以配置好几个内标元素,就可以分析不同基体的生产任务。

  §6—5— 7 高低标试样的设置

  分析元素工作曲线的标准化已在§6—3中简单的叙述了。在日常分析中,经常校正工作曲线是非常重要的。一般绘制中低合金钢的标样要使用十几个以上标钢,需要几个小时的时间才能完成制作任务。如果选用一套高低标钢,在分析运算之前就进行数据标准,则将节省许多校准时间,简化了操作手续。

  在直读光谱分析工作中,在分析样品之前,必须先进行一次工作曲线的标准化操作;一般规定8小时进行一次标准化。对高合金钢而言一般在分析之前需要进行标准化。标准化数据的运算由计算机自动进行。

  选择一组标准化样品是非常不易的事情,其中包括所有要分析的元素的高含量和低含量。这些标准化样品不必分别用湿法化学或其他方法分析,但是它们必须均匀一致,激发光谱分析的数据重复性必须很高。也可以从工作曲线上得到它们的分析值。

  标准化样品必须在制做元素工作曲线的同时,把标准化样品激发,以保证曲线没有偏移和给定值是正确的。

  显然,标准化样品的数量希望尽可能少些。因为标准化样品价格很贵,对每个样品操作又需要额外时间。

  在一点标准化中,只需要高的或低含量的标准就够了,如果样品能复盖的含量范围较宽,又要在低含量时有较高的精度才需要二点标准化。这时要有二种标样。一为高标,一为低标。或者每个标样中可包含一些高浓度元素和另一些低浓度元素,只要它们能包括所有元素就行。

  高浓度和低浓度值不一定正好在校准范围的最高端或最低端。但是它们应该接近这个范围的最高端和最低端;它们之间应有足够的差值。使计算机能够计算新的增益系数α值和新的截距β值:

  造成曲线漂移的因素很多,透镜受到污染形成涂层而引起、激发过程中电极长尖现象,使曲线显示背景增大,氩气流量,压力、纯度的变化等原因也能造成曲线的漂移,特别应该指出的是C、P、S元素的光谱线位于远紫外区,它的变化特别敏感;如果我们发现了这种变化,立即进行标准化是非常必要的

  §6—5—8 第三元素干扰及其修正

  直接激发金属和合金分析时,在光源的作用下,试样中所有元素一起进入蒸气云中。一种合金一般都含有一种主要成份。我们称之为基体元素。在分析元素和基体元素之外存在于试样中的元素称为第三元素。由于第三元素的存在而引起分析元素谱线强度的改变,造成分析结果的波动称为第三元素的干扰。

  产生干扰的原因很多,如:

  第一:试样中基体成份的改变,产生的基体效应事实上也是第三元素的干扰。

  第二:第三元素与分析元素谱线重叠或靠近,同时被光电倍增管所接收,这就形成了第三元素谱线强度的叠加或干扰。

  第三:物理化学因素所造成的干扰,致使分析间隙的蒸气成份和温度发生变化。引起元素谱线强度的增加和抑制,从而影响被测元素的谱线强度,造成分析结果发生偏差。

  第四:是谱线背景变化的影响,由于干扰元素的影响,造成分析线背景的变化,从而造成分析谱线光强变化。

  第五:内标线受到第三元素的干扰。

  第六:是带状分子光谱的干扰。

  以上几个方面的干扰,给待测试样的分析结果带来很大误差。总的说来使元素的工作曲线产生移动和转动。

  研究第三元素干扰是非常复杂的事情;元素之间的相互干扰也是非常普遍的。为了提高分析的精密度;用好干扰元素的修正公式,研究干扰的原因,不断地提高分析技术水平。

  (1) 叠加式干扰修正。

  叠加式干扰系数的实际含意是试样中1%干扰元素对被干扰元素增加了多少光强比。

  (2)成比例增加干扰修正。

  对于特定的激发光源和被分析材料的成分造成的干扰有时表现为成比例增加的干扰,这可引起曲线的转动。

  无论是叠加式干扰,还是成比例增加干扰都是用一个干扰系数乘干扰元素的百分含量来修正光强比,为了能进行对第三元素干扰的修正,必须要知道第三元素的含量。

  对于元素的干扰修正的数据处理,由计算机去完成。

  §6—5—9 入射狭缝的定位和描迹

  由于温度的变化及其它因素的影响,可能引起谱线飘移,为保证谱线和出射狭缝稳定重合,应定期用描迹的方法进行调整,使所有出射狭缝调整到较理想的位置上。

  描迹的方法是转动人射狭缝的手轮,描迹一条谱线,找出其峰值的位置,然后将手轮转到该峰值的位置,使各个分析元素谱线对准各自的出射狭缝。

  在直读光谱分析中的描迹,主要是确定入射狭缝的位置;根据生产厂家的规定,一般把铁和汞线当作描迹谱线。描迹的过程也可用计算机去完成。
顶部
wccd[使用道具]
五级
Rank: 5Rank: 5


UID 39836
精华 8
积分 1272
帖子 647
信誉分 118
可用分 3155
专家分 135
阅读权限 255
注册 2010-6-9
来自 china chongqing
状态 离线
3
 
谢谢分享,楼主辛苦了。
顶部