生物制药 » 讨论区 » 经验共享 » 【讨论帖】疫苗研发的新思路

采购询价

点击提交代表您同意 《用户服务协议》 《隐私政策》

 
需要登录并加入本群才可以回复和发新贴

标题:【讨论帖】疫苗研发的新思路

rxcc33[使用道具]
四级
Rank: 4


UID 79965
精华 0
积分 633
帖子 885
信誉分 100
可用分 5303
专家分 0
阅读权限 255
注册 2011-12-18
状态 离线
71
 
我也来顶一下, 我现在主要从事的是多肽疫苗的工作, 我一直很看好多肽疫苗和基因疫苗。 目前我们实验室有一些预测多肽抗原表位的软件, 对线性多肽的预测能达到90%以上, 但对空间的构像表位还在摸索。
顶部
66+77[使用道具]
四级
Rank: 4


UID 75637
精华 1
积分 596
帖子 785
信誉分 103
可用分 4751
专家分 20
阅读权限 255
注册 2011-10-26
状态 离线
72
 

我突然有一个很不切实际的想法:
所有生物,包括病毒共存在这个世界上,通过不断的竞争和进化,最后就是适者生存,达尔文的进化论似乎是自然选择的结果,人类对抗疾病是否能算在这个范畴里面?我觉得是人类在试图改变自然选择,当然人类是伟大的,也确实取到了很多成绩。反过来想,如果人类跟其它动物一样,我们没有这么伟大的智慧,没有发现什么免疫学、基因工程等,只能顺从自然选择的结果,当一种灾难性的疾病爆发的时候,世界上绝大部分的人可能都会死亡,如果有幸存的那部分人就等于是进化了,他们为什么能幸存?跟被淘汰的那部分有什么区别?遗传上改变了什么?试想一下人类自然遗传上会什么进化来对付自然挑战?
当然这纯属是想象,呵呵,人类是不可能人自己“自生自灭”的!但是对这种通过自然选择幸存下来的那部分人或动物,它自身最有可能改变了什么的猜想,是否能给我们的研究提供新的思路呢?
生物世界里还有共生,共生是否也是远古时代竞争导致的结果呢?
人类基因组里面有很多内含子,这些基因又是否在不断的遗传进化中吸收某些病源体的基因而形成的?又或者它隐含着某种特殊的功能,在某种强度的外界条件的激发下慢慢地转变成人类对抗疾病的有用基因?
纯属小弟的胡思乱想!!哈哈哈....
顶部
milkdog[使用道具]
四级
Rank: 4


UID 79280
精华 0
积分 500
帖子 719
信誉分 100
可用分 4366
专家分 0
阅读权限 255
注册 2011-12-9
状态 离线
73
 
从生产线上看疫苗开发:
我是兽药生产企业的研发着,每次看到关于基因疫苗,感觉无法真正在我们的车间里生产。
主要问题就是成本高。
目前有一种DNA免疫增强剂,是美国动物保健品公司研发主管推荐我们在佐剂开发中添加的成分,20kb左右,但如果大规模合成这个2mg左右需要2000左右人名币,折合到每头份疫苗中约1头猪7块钱,现在市场上疫苗几乎还没有7块1头份的呢。所以说根本无法实现。
另外个人意见:DNA 序列特异性高,这比病原的血清型还要复杂,所以说对疾病的预防特异性达不到要求
个人没做过生产,但感觉也不象你说的那样,如何提高表达效率,降低生产成本确实是DNA疫苗的一个瓶颈。
但随着活体电穿孔技术的普及,这个已经不再是一个问题了。目前国际上有3个兽用产品上市,人核酸疫苗进入临床的也有若干家,有的一期效果也挺好。活体电穿孔可提高表达效率10-100倍,当然,仪器质量、性能、不同质粒、实验人员的操作都有关系。
顶部
milkdog[使用道具]
四级
Rank: 4


UID 79280
精华 0
积分 500
帖子 719
信誉分 100
可用分 4366
专家分 0
阅读权限 255
注册 2011-12-9
状态 离线
74
 
1:DNA疫苗和各种亚单位疫苗....都是骗人的!新型佐剂的研究...!哈哈!就像寻找“长生不老药”一样可笑!
2. 我们现有的病毒学与免疫学理论,也就是对病毒和机体的关系本身了解了那么一点点......,还等着免疫学的重大新理论!!!!?盲人摸象!耳朵是啥样你还没摸全呢!就喊着要发现“大象的新品种”!!!
3. 各种新型疫苗(多肽疫苗,载体疫苗,DNA疫苗等)至少在未来50年,甚至更长时间,将长期停留在理论研究或者实验室水平上!!!。
有点太悲观了吧。至少动物DNA疫苗已经在国外上市了
顶部
ALALA[使用道具]
四级
Rank: 4


UID 77477
精华 0
积分 671
帖子 1002
信誉分 100
可用分 5901
专家分 0
阅读权限 255
注册 2011-11-17
状态 离线
75
 

Influenza vaccine market dynamics
The market for seasonal influenza vaccines, sized at US$2.8 billion in 2008–2009 across the seven major markets (United States, Japan, France, Germany, Italy, Spain and UK), has had a strong compound annual growth rate of 12.6% since 2005–2006 (Ref. 1). In recent years, the sector has benefited considerably from an increase in disease awareness and funding, triggered by the threat of an influenza pandemic. However, owing to increasing competition and market commoditization, maintaining this strong growth momentum will be a key challenge in the future. The cautious stance of regulators towards new technologies inhibits successful product differentiation, particularly in the crucial US market. Improved vaccines for the elderly, alongside faster and more flexible manufacturing technologies, are the key unmet needs.
Challenges of the market
The influenza vaccines market is a challenging sector for several reasons. Besides requiring annual updates, seasonal influenza vaccines have to be produced and shipped within a short time frame of 6 months. Manufacturing delays and reduced output can result in losses of revenue and market share. Additionally, the demand for seasonal influenza vaccines is variable and often unpredictable, being influenced by factors such as the weather, the timing and severity of the influenza season, vaccine availability and public awareness of vaccination. These factors make production planning difficult. The pandemic influenza vaccines business is even more unpredictable and depends almost exclusively on government stockpiling and supply contracts.
A re-emerging focus for vaccine players
Historically, the influenza vaccine landscape has undergone marked fluctuations, particularly in the United States. The country remains the single largest market for seasonal influenza vaccines, accounting for 40% of overall sales across the seven major markets in 2008–2009 (Ref. 1). In the 1970s, at least ten US firms were marketing seasonal influenza vaccines. As a consequence of stricter FDA regulations and poor returns on investment compared with other pharmaceutical sectors, only three companies remained in the market in 2002: Wyeth, Aventis Pasteur (now Sanofi Pasteur) and PowderJect (now Novartis). In 2003, Wyeth ceased production of its own vaccines to concentrate on marketing MedImmune's (now part of AstraZeneca) FluMist, but decided to leave the flu space altogether in 2004.
Two factors prompted a change in US policy: the emerging threat of a pandemic caused by the H5N1 avian influenza strain since 2004 and a perceived vaccine supply shortage in 2004–2005 following disruptions at Chiron's (previously PowderJect's) manufacturing facility. The US government subsequently began to invest heavily into establishing US-based influenza vaccine production capacity, aiming to decrease the country's dependence on vaccine imports from few, mostly European, manufacturers. Furthermore, the US provided an additional growth stimulus by sequentially expanding recommendations on seasonal influenza vaccination to include more than 85% of the country's population by 2009 (Ref. 2). This combination of 'push' and 'pull' incentives transformed the sector's commercial potential, attracting numerous vaccine developers to build and expand their influenza portfolios in the United States. Following the market entry of GlaxoSmithKline (GSK) in 2005 and CSL in 2007, the number of vaccine suppliers for the US market has increased to five in 2009, with Sanofi Pasteur as the market leader (Fig. 1).
However, as the demand for seasonal influenza vaccination in the general population has failed to meet the expectations of suppliers, oversupply of these vaccines in the United States has become a growing problem during the past influenza seasons (Fig. 2).
This has triggered a growing commoditization of influenza vaccines. Prices, which increased from below $2 per dose in the late 1990s to $12 per dose at the peak of the business in 2007, have fallen over the past 2 years to reach a new low of $8.60 on average in 2009 (Ref. 3). To reverse this price decline, reduce the commodity nature of influenza immunizations and improve their market shares, vaccine developers are turning to new technologies that could offer product differentiation.
Developments in adjuvant technology
顶部
ALALA[使用道具]
四级
Rank: 4


UID 77477
精华 0
积分 671
帖子 1002
信誉分 100
可用分 5901
专家分 0
阅读权限 255
注册 2011-11-17
状态 离线
76
 
One key area of interest is an enhancement of vaccine immunogenicity through adjuvants. The key advantage in the influenza sector is a reduction in the amount of antigen required for protective immunization. This so-called dose-sparing effect helps to increase the number of available vaccine doses. This is particularly important in a pandemic, when the supply, limited by manufacturing capacity, cannot meet the demand. Another advantage of adjuvanted vaccines is their potential for improved immunogenicity in the elderly, which is a key unmet need. Novartis and GSK are currently furthest advanced in developing these technologies for influenza. Both companies have already received European approval to make products using their oil-in-water-based emulsions MF59 and AS03, respectively. By contrast, gaining US approval for adjuvanted vaccines has proven difficult, with the FDA adopting a conservative position, presumably owing to a lack of data on the long-term safety profile of novel adjuvants. The current influenza A (H1N1) pandemic has rejuvenated interest in adjuvanted influenza vaccines, with several governments investing into large adjuvant stockpiles. Clinical studies investigating potential benefits of various adjuvanted pandemic influenza A (H1N1) vaccines were initiated. However, clinical trials of non-adjuvanted H1N1 vaccines have now demonstrated sufficient immune responses, indicating that at least in the early stages of vaccination against H1N1, adjuvants will not play a part in the US.
Improving manufacturing techniques
A further opportunity for product differentiation is the influenza vaccine manufacturing process. With the exception of Novartis's Madin–Darby canine kidney (MDCK) cell-based vaccine Optaflu, which gained European Union approval in 2007, all marketed seasonal influenza vaccines are still manufactured in chicken eggs. This process is not only lengthy and inflexible, but would also be unsuitable in the event of an avian influenza pandemic. To provide faster and more flexible alternatives, numerous companies are developing alternative production systems. Besides Novartis, Baxter is the only other player to have gained European approval for a cell-based influenza vaccine — its mock-up pandemic vaccine Celvapan, which is manufactured in Vero cells (a kidney epithelial cell line derived from African green monkeys). During the current pandemic, both companies are set to gain substantial commercial windfalls from using this faster production technology for H1N1 vaccine production. Smaller players, including Protein Sciences and Novavax, are developing production systems in insect cells based on the baculovirus system. Other strategies in earlier stages of development include the use of bacterial and plant expression systems.
Outlook
The current influenza A (H1N1) pandemic has boosted vaccine stockpiling contracts. Established manufacturers, particularly Novartis and GSK, are likely to draw the largest commercial benefit. Besides its direct impact on pandemic vaccine sales, H1N1 will also influence the future development of the seasonal influenza vaccines market. We think that the most likely outcome for future sales development will be a transient boost triggered by the current pandemic. Seasonal influenza vaccine uptake will increase considerably over the next two influenza seasons, with sales figures rising to $4 billion by 2010–2011 across the seven major markets. Once the pandemic has passed, however, we expect a period of stagnation caused by declining seasonal vaccination coverage in most population groups (Fig. 3). By 2018–2019, the seasonal influenza vaccine market size could reach $5 billion across the seven major markets, driven by further extensions of vaccination recommendations1. Sanofi Pasteur, which was market leader in 2008 with global influenza vaccine sales exceeding $1 billion5, will maintain its top position; however, we think that GSK and Novartis will increase their share owing to their competitiveness in new technologies such as adjuvants and cell-based manufacturing.
顶部
hold住[使用道具]
四级
Rank: 4


UID 75093
精华 0
积分 566
帖子 832
信誉分 100
可用分 4962
专家分 0
阅读权限 255
注册 2011-10-19
状态 离线
77
 

相关疾病:
严重急性呼吸综合征脊髓灰质炎
说一点和话题有点不着边的看法:
我工作以前做分子这块的,工作后才定位在疫苗开发,最近同事的实验结果才让我想到这些的。个人觉得现在病毒的传播变异与全病毒减毒活疫苗,或者是实验室减毒株的横向传播和在一些条件下变异加快是很有关系的。疫苗生产有相关的GMP规范操作、操作环境等,但在疫苗研发没有细化的规范,各个实验室的规范各不相同,就拿我们单位来说,生产可以有规章等来考量操作尽可能杜绝污染发生,而研发就靠各实验室的管理、实验人员的操作等,一般科研单位都有学生在就读等,这就会造成规范化实施的困难,包括在大学里的实验室也是一样的。因为学生是不停的进不停地走,实验操作的规范化就不是很容易,安全意识也不是很高。原来非典时,不是就有一起传染就是从实验室由学生带出去的么,所以我觉得要是科研的环境操作等也像生产的GMP那样细化规范化,也许可以减少一些交叉污染,减少病毒的人为变异,减少实验数据的人为干扰。曾经在大学中就读是发现一段时间后自己的无抗性菌居然莫名奇妙有抗性,而且是整个实验室的菌有点这种“变异”,只能从另外的科室要新的菌,但是再过几个学年又有“变异”。现在同事做的是唾液中脊灰抗体的检测,原设计的空白对照就是成人的唾液,结果取了她本人的,我和其他同事的、其他行政科室同事的,做出来都是至少一个型是阳性,同事本人么不用说是强阳性(她本人到还解释得通,因为长期接触采集的样品,临床样品等,会有抗体是正常的只是行政科室的同事的结果就有点出乎意料了)所以,才促使我想到这些的。
现在也是借这个机会发表下自己的看法。
顶部
ladyhuahua[使用道具]
四级
Rank: 4


UID 76658
精华 0
积分 984
帖子 1667
信誉分 100
可用分 9116
专家分 0
阅读权限 255
注册 2011-11-8
状态 离线
78
 
其实,在我脑子里一直有这样一种很粗浅的想法。基本上无论是细菌性传染病或者是病毒型传染病,其治病机理多半为抗原在体内侵染正常细胞,进行繁殖,在繁殖过程中产生毒素或其他物质,抑或引起强免疫反应,造成机体损伤。
如果我们可以研制出一类疫苗,将人体正常细胞表面的蛋白结构保护起来,就好像给细胞穿上一件衣服一样。那么无论是来细菌或者是病毒,那么受侵染的可能性会大大降低,甚至达到百毒不清的地步。说白了,就是改变人体细胞表面抗原结合位点来达到免疫的目的。不知这样的研究是否太超前?哈哈,就当是提出的一种见解吧。
......

==============================================================================================================

相关疾病:
传染病

正常暴露在细胞膜表面的膜蛋白是有生理功能的,如果穿上衣服可能会不干活了。我记得有些人群对HIV免疫就是自身的细胞膜上的受体蛋白突变,丧失了原本功能,但是同时也躲避了HIV入侵。
顶部
kulee[使用道具]
四级
Rank: 4


UID 77361
精华 0
积分 615
帖子 849
信誉分 100
可用分 5127
专家分 0
阅读权限 255
注册 2011-11-16
状态 离线
79
 
我是在读小硕一个,目前在研究幽门螺杆菌疫苗,最根本的问题应该还是某种细菌的治病机制,这个东西搞懂了,才可以有的放矢,制造出好的疫苗。
顶部
tie8[使用道具]
三级
Rank: 3Rank: 3


UID 75844
精华 0
积分 442
帖子 543
信誉分 100
可用分 3571
专家分 0
阅读权限 255
注册 2011-10-28
状态 离线
80
 
寄生虫的疫苗开发似乎比较难哦.
为什么? 虫体太大, 特异性抗体和T细胞能不能搞定啊?
个人认为, 疾病的控制策略应该很多种,或者说,疾病的控制应该是采取综合措施和因病而异.
对付那些传播性能很高,也就是说,通过空气尘埃,飞鸟,人之间近距离接触,污染的用具和食品等进行的,病毒病,疫苗是很成功的. 一些细菌病也是如此.
但是,对于像疟疾,血吸虫等寄生虫病,我认为,环境治理措施应该有效得多.包扩其中间宿主的控制,和药物治疗. 这也是为什么疟疾和血吸虫在我国得以控制的原因.当然,高效疫苗开发也应该是我们努力的方向.
maoadai 和gofrom2004战友说的很好, 让我们学到了许多东西.
目前疫苗开发研究热潮中,似乎把寄生虫给忘记了.这是非常不明智的,国家应该投入一定的比例来做. 防患于未然,何况,我国好象血吸虫在洞庭湖又重现了哦!
期待更多虫子疫苗方面的研究讨论.
学习中............
gofrom2004 战友在他乡辛苦了!!!
......

=======================================================================================

相关疾病:
疟疾寄生虫病细菌感染感染
个人认为,寄生虫疫苗要看具体的病原体。对于原虫,大可以采用疫苗防治。特别是对非洲那样的老少边穷地区。
原虫的免疫中无论体液免疫还是细胞免疫,都很类似细菌感染中的免疫过程。
比如红细胞期的疟原虫,IgG调理 巨噬细胞吞噬作用在清理感染红细胞中起了主要的作用。
至于蠕虫,个人认为,机体免疫在感染中起的正面作用有限。
顶部