PNAS:脂质分子可提高RNAi递送效率

  PNAS:脂质分子可提高RNAi递送效率

  Update:2010-01-01From:科技日报 Hot: 175

  美国麻省理工大学和奥尼兰姆制药公司的研究人员日前表示,他们利用新的核糖核酸(RNA)干扰技术,成功地关闭了实验鼠肝脏内的多个基因。该成果有望为医治肝脏和其他内脏疾病开创新方法。

  RNA干扰是一种自然发生的细胞核中遗传信息向细胞内蛋白生产机制传递时受到干扰的现象。自1998年发现该现象以来,科学家一直在试图利用它来关闭人体中的基因,特别是那些失效的能导致癌症等疾病的基因。RNA干扰法成功的关键是寻找到一种安全且有效地传递RNA短片段(short strands of RNA)的途径,这些RNA短片段能够绑定并摧毁携带细胞核指令的信使RNA(mRNA)。

  麻省理工大学大卫科赫综合癌症研究所的生物医学工程师丹尼斯·安德森和同事相信,最好的途径是将具有干扰能力的RNA短片段包裹在一种脂质分子层中,该分子能穿过细胞多脂肪的外膜。利用脂质分子,科学家一次能够成功地将5个RNA短片段传递到目的地。安德森认为,脂质分子拥有同时传递20个RNA短片段的潜能。

  为了实现传递RNA短片段的目的,麻省理工大学和奥尼兰姆制药公司的科学家合作,开发出了快速生成、组合和筛选不同脂质分子的方法,这使得他们有能力从获得的分子中挑选最有效的分子。

  在过去的研究中,科学家获得了1000多种脂质分子。新近他们挑选出最有效的分子并用独特的化学反应产生出拥有126个类似分子的分子库,然后将注意力放在其中最有潜力的被称为C12-200的分子上。利用该分子,科学家发现,能够有效地关闭基因的剂量为每千克溶剂中RNA短片段量低于0.01毫克。如果用于人体,那么只需1毫升的注射量就可以关闭一个基因;而用过去的制剂,需要数百毫升才能达到相同目的。

  安德森在美国《国家科学院院刊》上介绍说,新的RNA干扰法比过去的方法更有效,这能让人们极大地减少使用剂量,也为开发能同时抑制多种基因或通道的制剂开启了大门。科学家希望在准确掌握理想的有效剂量以及增加生产能力后,在未来数年内就开始临床试验新的RNA干扰法。

  原始出处:

  PNAS February 10, 2009, doi: 10.1073/pnas.0813348106

  Claudin-3 gene silencing with siRNA suppresses ovarian tumor growth and metastasis

  Yu-Hung Huanga, Yunhua Baoa, Weidan Penga, Michael Goldbergb, Kevin Loveb, David A. Bumcrotc, Geoffrey Colec, Robert Langerb,d,1, Daniel G. Andersonb,1 and Janet A. Sawickia,e,f,1

  aLankenau Institute for Medical Research, 100 E Lancaster Avenue, Wynnewood, PA 19096-3450;

  bDavid H. Koch Institute for Integrative Cancer Research and

  dChemical Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Rm E25-342, Cambridge, MA 02139-4307;

  cAlnylam Pharmaceuticals, Inc., 300 Third Street, Cambridge, MA 02142; and

  eDepartment of Dermatology and Cutaneous Biology and

  fKimmel Cancer Center, Jefferson Medical School, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA 19107

  Claudin-3 (CLDN3) is a tight junction protein that is overexpressed in 90% of ovarian tumors. Previous in vitro studies have indicated that CLDN3 overexpression promotes the migration, invasion, and survival of ovarian cancer cells. Here, we investigated the efficacy of lipidoid-formulated CLDN3 siRNA in 3 different ovarian cancer models. Intratumoral injection of lipidoid/CLDN3 siRNA into OVCAR-3 xenografts resulted in dramatic silencing of CLDN3, significant reduction in cell proliferation, reduction in tumor growth, and a significant increase in the number of apoptotic cells. Intraperitoneal injection of lipidoid-formulated CLDN3 siRNA resulted in a substantial reduction in tumor burden in MISIIR/TAg transgenic mice and mice bearing tumors derived from mouse ovarian surface epithelial cells. Ascites development was reduced in CLDN3 siRNA-treated mice, suggesting the treatment effectively suppressed metastasis. Toxicity was not observed after multiple i.p. injections. Importantly, treatment of mice with nonimmunostimulatory 2′-OMe modified CLDN3 siRNA was as effective in suppressing tumor growth as unmodifed siRNA. These results suggest that lipidoid-formulated CLDN3 siRNA has potential as a therapeutic for ovarian cancer.