微波受激发射放大

原子系统自发的低度非相干受激发射,早为人们所知。在实验室得到完全相干的受激发射是物理学实验上的突破。1954年,C.H.汤斯和他的同实验者(中国学者王天眷参与了此项研究)成功地获得了氨分子微波激射放大和振荡,装置按理论预卜运转,遂命名为 "Maser"。苏联的Η.Γ.巴索夫和A.М.普罗霍罗夫也在差不多同时独立研制了同样的微波激射器。汤斯、巴索夫和普罗霍罗夫于1964年共同获得诺贝尔物理学奖。
  因碰撞和动态热平衡,在室温下高低两能态的气体分子数依玻耳兹曼分布律分布(见玻耳兹曼统计),此时低态分子数多于高态分子数,当加上与两能态间共振跃迁相应频率的辐射场时,只能观察到吸收线,若要产生发射,必须使高能态上的分子数多于低能态的,即实现布居数反转。氨分子束激射器实验布置如图1a所示。分子束系统密封在高真空包壳内,氨分子通过束源的一束细管,产生分子束,射入选态焦聚器,此器件由四条圆柱形高压电极组成,其截面如图1b所示。它的轴心和束轴平行,圆柱电压正负相间,柱的间隙中有不均匀电场存在,其强度随离轴心距离的增大而增高。氨3-3线的分子(带有电偶极矩)通过焦聚器的电场,场强越高,高能态分子的能量就越高,因此受到拉近电极轴心的焦聚力而会聚,低能态分子则受到相反的力而散失。分子束经焦聚器后,从一端圆孔注入圆柱形的微波谐振腔内,腔为TM模,将谐振频率调到3-3线的共振跃迁频率即 23870MHz时,如受微弱场激励,就产生受激发射(激射)放大。谱线很窄,线宽仅为吸收线的十分之一。且噪声极小,仅有量子的散粒噪声。因放大能量来自量子作用,故称量子放大。如增加束强,量子能量超过腔内的损耗,则系统在无微波能量输入时,就能维持运转,即产生振荡,振荡后谱线频率纯度极高(相干性极高),准确度达10-11,这主要是由分子跃迁的稳定特性决定的。 微波受激发射放大  两能态分子的激射也能在甲醛(CH2O)分子转动能态跃迁中实现,于 28975MHz中可分辨10~23kHz的超精细分裂。
  顺磁和核磁共振的激射  含过渡元素离子、 F色心、自由基等的顺磁固体中,存在不成对电子,其磁矩为-μe(见顺磁性)。在恒磁场B0中,自旋同磁场平行的态为激发态自旋同磁场反平行的态为基态,两能态的能量差为μeB0,在系统与环境温度平衡后,基态电子的布居数大于受激态,如以共振频率v=μeB0/h的脉冲电磁场激励(h 为普朗克常数),脉冲宽度合适,就可产生能态布居数反转,再引入共振信号,就能产生固体两能态电子顺磁共振的激射。要使能态上的粒子布居数反转,也可将激励连续波经适当的速率(慢于电子自旋旋进的角速率)循一方向扫频,频率扫经共振频率时实现;或将所加的磁场倒转来实现;从而得到激射。
  如将含质子(氢原子核)的样品替代顺磁固体,安置于恒磁场中,则质子将与电子相似,产生核磁共振,也可得到激射,它的频率在射频频带,只为电子顺磁共振的。含质子的样品一般为液体,可先将液体流经一前置磁场中极化,再经一反向的实验(第二)磁场,产生激射,这就是液体的激射器。
  三能态、四能态固体顺磁共振激射  含过渡元素离子的顺磁晶体,电子自旋和轨道运动耦合,在磁场作用下,将呈现不等距三能态,如图2中红宝石 (CrAlO3)的铬离子(Cr3+)的能态图,E3>E2>E1,E1、E2、E3的布居数为n1、n2、n3,按玻耳兹曼分布时 n1>n2>n3。如在样品系统上加以频率为的激励电磁场,可使布居数发生变化,并使n婭>n2,这程序称抽运或泵,此时系统可在的频率上产生激射。经此激射后,又将E3 上的粒子转移到E2 上,使得n娦>姈,又产生频率为的级联激射。 微波受激发射放大  其他晶体,如含Cr3+的K3CO、Cr(CN)6及含Gd3+(钆)的 GdLa(C2H5SO4)·9H2O晶体,也可产生三能态顺磁共振激射。两能态激射器须脉冲抽运才能运转,三能态激射器可连续运转,较为有用。
  顺磁晶体四能态系统的各式抽运和激射机制表示见图3。图3a表示以为抽运频率,可产生和的激射。图3b表示以 为抽运频率,可产生的激射。若如图3c, 以为抽运频率,可产生的激射。 微波受激发射放大  行波激射  腔式固体三能态激射器可连续运转,但频宽较窄,而频宽与增益成反比,如要扩大系统的频宽,则须降低激射增益,而减小系统的声噪比,因此不能发挥激射低噪声的优越性。行波激射放大系统有频宽宽、噪声低的优点,这系统用红宝石作活性材料,切割成长片,加以磁场,纵向地安放在矩形波导管中的一侧,波导一端单向输入抽运频率为vp(高频)的微波功率,它向前行进时对红宝石的能态起抽运作用,使与运转频率v相应的两能态布居数反转,可诱使频率为v的激射放大波向另一端单向输出,波导管上放置梳形慢波结构,以延缓微波行进波速,提高运转效率,同时也可用于激射器的频率调谐,达到良好的行波激射放大。
  分子谱线的准确测量  吸收谱线一般比较宽,谱线超精细结构(见原子光谱的超精细结构)比较复杂,无法分辨,自氨受激发射运转后,因激射线比吸收线狭窄很多(线宽仅为7kHz),就可将系统用作高分辨谱仪,将氨分子3-3线的超精细卫星线显示得十分清晰。通过精确测量,算出极准确的分子结构常数,得到N-H键的长度为1.014┱, N-H键和分子对称轴的夹角为67°58┡;1H和1H的自旋相互作用能量为27.7kHz,式中gH为质子的朗德g因子,μN为核磁子,r为质子和质子间的距离。氮核电四极矩eQN(e为电子电荷的绝对值)和周围电场梯度q的耦合常数的平均值为


  如将氨3-3线的激射振荡和一速调管锁频,以提高速调管的稳定度,用作测量主线旁卫星线的频率,使观察的分辨率和声噪比提高约两个数量级。
  激射放大器的噪声  室温下氨激射放大器的噪声系数F为-2.0dB(分贝),很接近理想激射放大的理论值。因在微波波段内,光子能量hv小于热辐射能量 kT,即hv<kT(k为玻耳兹曼常数,T为系统的绝对温度),激射放大的噪声主要是热噪声,考虑将电子自旋的温度作为顺磁激射放大器的热噪声温度,实验测得它的有效温度Te接近于绝对温度0 K,故kTe≈0,激射放大的噪声仅为光子的散粒噪声,极小,为最优良的放大器。
  氢原子激射  因氢(氕)原子基态为1s2S½;,电子自旋为,氢核(质子)的自旋为,故氢原子基态超精细结构分为F=1和F=0两态,在弱磁场中的分裂如图4a所示。F=1,MF=0态至F=0、MF=0态的跃迁频率,与磁场B仅有二次方的关系,因磁场极小,它的影响也就很小。氢激射器即选定以此超精细跃迁的频率运转,它的仪器结构示如图4b。全部系统密封在真空容器中。用高频放电将氢分子分解得到氢原子,经过细管(源)形成原子束,此束通过六极不均匀磁场选态焦聚,受激态(F=1,MF=0)原子射入微波共振腔内的贮存泡中。腔用石英制成,内部镀银,采用圆柱型E模,得到相当高的Q(品质因数)值;将腔调谐到基态(F=1,MF=0)的跃迁频率上,约为 1420、405MHz;腔外装有三至四层磁屏蔽,以消除地磁对系统的影响;但须加以微弱的磁场,以分别超精细态的磁子态。贮存泡也用石英制成,为圆球形或长圆球形的薄泡,内镀一层聚四氟乙烯薄膜,使激发态的氢原子和泡壁碰撞时不产生能态跃迁。受激态原子在腔内的场中产生激射放大。当受激态原子放出的光子能量足够补偿腔的损耗时,就产生振荡。振荡频率稳定度极高,达10-15数量级。因氢原子的超精细跃迁频率受贮存泡镀层的影响,不同镀层有不同频移(壁移),则其频率准确度稍优于1×10-13。 微波受激发射放大  1951年在射电天文研究中发现了氢原子的基态超精细激射。N.F.拉姆齐和他的实验同伴,首先在实验室中建立了观察系统,并实现了运转(1960)。