【转帖】《Guide to Protein Purification, 2nd Edition》读书笔记

做个读书笔记,理一理自己的思绪。借他人的文字来总结一下自己的经验。
由于全书有783页,很长,估计我这个读书笔记也要做很久,但我想坚持下去,把它做完,即使做个一年……。

由于是个人的读书笔记,引用的原书文字为本人感兴趣的部分,评价也好,有感而发也好,亦如此。并非对全书内容的介绍和总结。如果有混乱的地方,请参看原版书。

全书共有12节(Section),44章(Chapter),初定为以每节(Section)为一个笔记。

第一部分:Chapter 1-4
【兴趣小组】《Guide to Protein Purification, 2nd Edition》读书笔记(一)
cuturl('http://www.dxy.cn/bbs/post/view?bid=65&id=16547355&sty=1&tpg=1&age=0')

第二部分:Chapter 5-10
Section II. General Methods for Handling Proteins and Enzymes 35
5. Setting Up a Laboratory 37
6. Buffers: Principles and Practice 43
7. Measurement of Enzyme Activity 57
8. Quantitation of Protein 73
9. Concentration of Proteins and Removal of Solutes 97
10. Maintaining Protein Stability 121

我也来说两句 查看全部回复

最新回复

  • dog002 (2013-11-14 22:27:58)

    试验室装备
    (略)

    本章感觉写得很乱,不够好,也没有什么很特别的地方,就不做详细的笔记了。还不如我的那个“蛋白质纯化武器-设备篇”
    cuturl('http://www.dxy.cn/bbs/post/view?bid=65&id=15120322&sty=1&tpg=2&age=-1')
    简单明了实用呢,呵呵,自我被厚脸皮了一次。

    简单讲,一个蛋白质纯化试验室包括通用设备、检测设备和纯化用设备。也是一个人为的分类,界限不是清晰的。

    我觉得值得拿出来讲一讲的是:
    1、High-grade distilled H2O 高纯水
    高纯水是一个模糊词,不恰当。当然,这有可能是由于老外和我们国情的差距,比如说我们的自来水标准与他们是不一样的。
    在试验室,我们通常把水分为:自来水,纯化水(去离子水)和注射用水。当然,也许有的试验室还有双蒸水,三蒸水等,这可以归纳到纯化水当中去。
    自来水不能作为蛋白质纯化过程用水。自来水只能用来洗洗刷刷用。
    纯化水是蛋白质纯化用的主力军。
    对高要求的蛋白制品,例如药用蛋白,蛋白质纯化用水最好全程都是注射用水了。这是为了严格控制内毒素热源的需要。
    还要强调一下,双蒸水或三蒸水都不能等价于注射用水。注射用水可以用双蒸或三蒸的方法来制备,但要经过严格的检验和保存程序,合格后才能作为注射用水。
    在我们普通的试验室当中,例如多数的大学和研究所,没有实际意义上的注射用水。注射用水存在于GMP的药厂中。

    2、Spectrophotometer 分光光度计
    这个不是指连接在纯化系统中的分光光度计,而是单独的全波长紫外-可见分光光度计,一般是190-760nm波长范围,可以做全波长扫描。
    一个很重要的设备,要注意石英杯和玻璃杯的差别,玻璃杯只能测可见光。

    3、FPLC systems
    蛋白质纯化用层析设备。
    在老外的文章或书中经常看到这个词FPLC,好像老外很喜欢这个东东。看来是人家市场推广做得好。
    我觉得FPLC没有多大意思。是夹在中间的一个档次的层析仪器。要买好的设备那就Explorer或Purifier,否则就用P50泵搭载国产的紫外分光光度计来做简易设备好了。

    4、Electrophoresis equipment 电泳仪
    最好的、最明智的选择,Biorad。


    72006989.jpg

  • dog002 (2013-11-14 22:28:26)

    缓冲液:原理与实践

    1. Introduction
    (略)
    2. Theory
    (略)

    此段略去,不是因为它不重要,而是因为原文较长,公式不好粘贴。建议认真地去看看中文的分析化学书,有关弱酸、弱碱和缓冲溶液的相关章节,一定要详细地多看几遍,把它看懂、看明白。关于缓冲溶液的原理知识,很基础,但对蛋白质纯化来说非常重要。
    特别是对磷酸盐缓冲液、Tris缓冲液、碳酸盐缓冲液、醋酸盐缓冲液、甘氨酸、咪唑等这几种更要充分了解。

    充分了解了缓冲溶液的理论,还对蛋白质纯化中所应用的关于蛋白质的理论滴定曲线,离子交换介质的pH应用范围,弱和强离子交换介质的本质区别、各种纯化介质基质的弱吸附性等有着更好的理解。

    滴定曲线是这些知识的图形理解很好的方式,本质是弱酸或弱碱的电离平衡。


    80135826.jpg

  • dog002 (2013-11-14 22:28:58)

    3. Buffer Selection
    There are many factors that must be considered when choosing a buffer. When studying an enzyme one must consider the pH optimum of the enzyme, nonspecific buffer effects on the enzyme, and interactions with substrates or metals. When purifying a protein, cost becomes an important consideration, as does the compatibility of the buffer with different purification techniques. Table 6.1 lists a wide variety of buffers covering a broad pH range.

    缓冲液选择
    缓冲液的选择有很多因素需要考虑。研究酶要考虑酶的最佳pH,非特异性缓冲液对酶的影响,及它对底物或金属的相互作用。纯化蛋白其成本是个着重考虑点,还要考虑缓冲液与不同纯化技术的相容性。表6.1列出了光谱pH范围的各种缓冲液。

    Determining the pH optimum of a protein is a first step in determining the best buffer to employ (Blanchard, this series). Since the buffering capacity is maximal at the pK, buffers should be used close to this value. When determining the pH optimum for an enzyme, it is useful to use a series of related buffers that span a wide pH range. Once an optimal pH has been approximated, different buffers within this pH range can be examined for specific buffer effects. The Good buffers have been shown to be relatively free of side effects.

    确定某个蛋白的最佳pH是决定选用最佳缓冲液的第一步。在pK值时,缓冲液的缓冲容量最大,所以应用的缓冲液要接近它的pK值。确定某个酶的最佳pH时,应用一系列pH宽范围的相关缓冲液是有用的。一旦估计出最佳pH,在此pH范围内的各种不同缓冲液就可以用来检测特异性的缓冲液影响。Good缓冲液一般不利影响相对较小。

    惭愧,做了这么多年的蛋白纯化,竟然不知道"Good's" Buffers是什么东西。放狗搜,含义如下:
    第一个紧密型的解释:
    "Good's" Buffers refer to the group of buffers described in the research of Dr. Norman Good et al. in 1966. These buffers were selected because they display characteristics making them integral to research in biology and biochemistry. The characteristics associated with a Good's buffer include the following: pKa value between 6.0 and 8.0, high solubility, non toxic, limited effect on biochemical reactions, very low absorbence between 240 nm and 700 nm, enzymatic and hydrolytic stability, minimal changes due to temperature and concentration, limited effects due to ionic or salt composition of the solution, limited interaction with mineral cations, and limited permeability of biological membranes. (Reference: Good, N.E., et al. (1966) Hydrogen Ion Buffers for Biological Research. Biochemistry 5(2), 467-477.)
    Pasted from: cuturl('http://www.sigmaaldrich.com/catalog/search/TablePage/14572938')


    16083989.jpg

  • dog002 (2013-11-14 22:29:19)

    第二个详细的解释:
    Good's buffers. From Wikipedia, the free encyclopedia
    Good's buffers (also Good buffers) are twelve buffering agents selected and described by Norman Good and colleagues in 1966. Good selected the buffers based on a number of criteria which make them candidates for use in biochemistry and biological research. Many remain staples in modern biology laboratories.
    Good sought to identify buffering compounds which met several criteria likely to be of value in biological research.
    1、pKa. Because most biological reactions take place at near-neutral pH between 6 and 8, ideal buffers would have pKa values in this region to provide maximum buffering capacity there.
    pKa。因为生物反应多数发生在pH6-8的中性范围内,理想的缓冲液其pKa值应该在此区域可以提供最大的缓冲容量。

    2、Solubility. For ease in handling and because biological systems are in aqueous systems, good solubility in water was required. Low solubility in nonpolar solvents (fats, oils, and organic solvents) was also considered beneficial, as this would tend to prevent the buffer compound from accumulating in nonpolar compartments in biological systems: cell membranes and other cell compartments.
    溶解性。为了便于操作,且生物体系处于水相中,缓冲液需要有良好的水溶性。在非极性溶剂中(脂肪,油类和有机溶剂)低溶解度被认为是有利的,因为这倾向于防止缓冲液中的组分在生物体系中的非极性部分中聚集,如细胞膜和其他细胞组分。

    3、Membrane impermeability. Ideally, a buffer will not readily pass through cell membranes, this will also reduce the accumulation of buffer compound within cells.
    膜的不通透性。理想的缓冲液应该不容易通过细胞膜,同样这可以减少缓冲液组分在细胞内的聚集。

    4、Minimal salt effects. Highly ionic buffers may cause problems or complications in some biological systems.
    最小的盐影响。高离子强度缓冲液可能会引起生物体系中的问题或复杂性。

    5、Well-behaved cation interactions. If the buffers form complexes with cationic ligands, the complexes formed should remain soluble. Ideally, at least some of the buffering compounds will not form complexes.
    良好的阳离子相互作用行为。如果缓冲液与阳离子配基形成复合物,它应该保持可溶状态。理想状态下,缓冲液组分中至少有一些是不会形成复合物的。

    6、Stability. The buffers should be chemically stable, resisting enzymatic and non-enzymatic degradation.
    稳定性。缓冲液应该具有化学稳定性,可以抵御酶或非酶降解作用。

    7、Optical absorbance. Buffers should not absorb visible or ultraviolet light at wavelengths longer than 230 nm so as not to interfere with commonly-used spectrophotometric assays.
    光吸收。在大于230nm的可见或紫外光波长,缓冲液应该没有光吸收,这样就不会与通常使用的分光光度分析方法相干扰。

    8、Ease of preparation. Buffers should be easily prepared and purified from inexpensive materials.
    容易配制。缓冲液应该容易配制,并且提纯于廉价的原料。
  • dog002 (2013-11-14 22:30:08)

    The twelve buffers selected by Good are tabulated below.
    Good选择的12种缓冲液如下表:


    13735381.jpg

  • dog002 (2013-11-14 22:30:27)

    汗一记,为什么我们蛋白质纯化最常用的PB、Tris、CB等都不在这个表中?

    References
    N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa and R. M. M. Singh (1966). "Hydrogen Ion Buffers for Biological Research". Biochemistry 5 (2): 467–477. doi:10.1021/bi00866a01

    However, inorganic buffers do have a high potential for specific buffer effects. Many enzymes are inhibited by phosphate buffer, including carboxypeptidase, urease, as well as many kinases and dehydrogenases (Blanchard, this series). Borate buffers can form covalent complexes with mono- and oligosaccharides, the ribose moieties of nucleic acids, pyridine
    nucleotides, and other gem-diols. Tris and other primary amine buffers may form Schiff base adducts with aldehydes and ketones.

    但是,无机盐缓冲液具有很高潜质的特异性缓冲液作用。很多酶可以被磷酸盐缓冲液所抑制,包括羧肽酶、脲酶,很多激酶和脱氢酶。硼酸盐缓冲液可能形成共价复合物,如单糖、寡糖、核酸的核糖部分、吡啶、核苷酸和其他的二羟基化合物。Tris和其他基本氨基缓冲液可能与醛酮类形成Schiff碱加成反应物。

    还好,这些这个酶那个酶的都与我无关,我还是用我的PB和Tris好了,呵呵。

    Buffer complexation with metals may present additional problems. In this respect, inorganic buffers can prove problematic in that they may remove, by chelation, metals essential to enzymatic activity (e.g., Mg2t for kinases, Cu2t or Fe2t for hydroxylases). Release of protons upon chelation or precipitation of metal–buffer complexes may also be a potential problem. Where metal chelation presents a problem, the Good buffers are useful since they have been shown to have low metal-binding capabilities (Good et al., 1966). Once a suitable buffer has been found (noninteracting, with an appropriate pK), a concentration should be chosen. Since high ionic strength may decrease enzyme activity, the buffer concentration should be as low as possible (Blanchard, this series). A reasonable way to determine how low a concentration may be used is to examine the properties (reaction rate or protein stability) at a low (10–20 mM) concentration of buffer. The pH prior to, and an adequate time after, addition of protein should not vary more than _0.05 pH. If the pH changes too drastically (greater than _0.1 pH unit), then the buffer concentration should be raised to 50 mM. In cases where protons are consumed or released stoichiometrically with substrate utilization, pH stability becomes increasingly important.
    (略)
  • dog002 (2013-11-14 22:30:58)

    几个注意点:
    1、防止维持酶活性的金属离子(e.g., Mg2t for kinases, Cu2t or Fe2t for hydroxylases)被无机缓冲液所鳌合或去除(沉淀?)
    2、Good buffers的金属离子鳌合性能低。对文章中的此点持保留。因为Good中有好些都有EDTA螯合剂,它怎么可能金属离子鳌合性能低呢?
    3、尽量使用低浓度的缓冲液,如10-20mM。
    4、如果酶反应消耗质子,pH的稳定性更为重要。


    Buffers may be made up in stock solutions, then diluted for use. When stock solutions are made, it should be done close to the working temperature, and in glass bottles (plastic bottles can leach UV-absorbing material) (Perrin and Dempsey, 1974). Buffers have temperature-sensitive pK values, particularly amine buffers. The carboxylic acid buffers are generally the least sensitive to temperature, and the Good buffers have only a small inverse temperature dependence on pK. The effects of dilution of stock solutions, or addition of salts, on pH should be checked by measurement of the pH after addition of all components.

    缓冲液可以配制成高浓度的储存液,使用时稀释。储液应该在接近工作温度的环境下的玻璃容器中配制(塑料瓶可能释放紫外吸收物质)。缓冲液的pK值有温度敏感性,特别是氨基缓冲液。羧酸缓冲液一般对温度不敏感,温度对Good缓冲液pK值仅有很小的影响。储存液的稀释,或盐的加入对pH的影响应该要校正,校正应该在所有组分加入后进行。

    这一段很有意义。温度变化,母液的稀释,盐的加入,这些因素对缓冲液pH的影响要充分认识到。在蛋白质纯化过程中,这都是非常常见的现象。例如,Tris缓冲液在室温和4度的差别,镍柱纯化时咪唑的加入,离子交换柱纯化时氯化钠的加入都对缓冲液的pH有较大的影响。不注意的话,可能试验出了问题还不知道如何去找原因。一句话,纯化所用的缓冲液在最终配制完毕后最好用pH计检测一下pH是否正确!这对离子交换层析尤其重要。

    Choosing a buffer for protein purification requires some special considerations. Large amounts of buffer will be needed for centrifugation, chromatographic separations, and dialysis, which makes cost a concern. Tris and many inorganic buffers are widely used since they are relatively inexpensive. Although buffers like Tris are inexpensive, and have been widely used in protein purification, they do have disadvantages. Tris is a poor buffer below pH 7.5 and its pK is temperature dependent (a solution made up to pH 8.06 at 25 C will have a pH of 8.85 at 0 C). Many primary amine buffers such as Tris and glycine (Bradford, 1976) will interfere with the Bradford dye-binding protein assay. Some of the Good buffers, HEPES, EPPS, and Bicine, give false-positive colors with Lowry assay.

    蛋白质纯化用缓冲液的选择需要一些特别的考虑。离心、层析和透析都需要大量的缓冲液,成本要考虑到。Tris和很多无机缓冲液被广泛使用是由于它们相对便宜。尽管Tris之类的缓冲液便宜,并在蛋白质纯化中广泛使用,但我们不能忽视它们的缺点。Tris在pH7.5以下的缓冲容量很低,它的pK值温度依赖性很强(25度时的溶液pH8.06,在0度时为8.85)。很多基本的氨基缓冲液,如Tris和甘氨酸,会干扰Bradford法的蛋白分析。一些Good缓冲液,如HEPES, EPPS, and Bicine,会对Lowry法分析造成假阳性颜色。


    氨基缓冲液会干扰Bradford,HEPES会干扰Lowry,要有印象,记住。
  • dog002 (2013-11-14 22:31:28)

    Spectroscopic measurement of enzyme rates is a commonly applied method. It may be important to use a buffer that does not absorb appreciably in the spectral region of interest. The Good buffers, and most buffers listed in Table 6.1, can be used above 240 nm.

    酶催化速率的光度分析方法很常用。所以在应用的光谱范围内,缓冲液没有丝毫光吸收就显得很重要。Good缓冲液,和表6.1中所列出的多数缓冲液都能在240nm以上使用。

    这个倒是不一定的。没有吸收自然是好,但有吸收也没有很大的问题。做个参照blanking,把本底值扣除就可以了,反正在做光度分析的时候是一定要做blanking的,不管你的buffer有没有光吸收,这是体系的要求。

    再延伸一下,做酶动力学光度分析,对分光光度计要求有恒温水浴装置,在买设备的时候要注意这点。酶反应可是和温度关系很大啊。
  • dog002 (2013-11-14 22:32:18)

    4. Buffer Preparation
    Once a suitable buffer has been chosen it must be dissolved and titrated to the desired pH. Before titrating a buffer solution, the pH meter must be calibrated. Calibration should be done using commercially available pH standards, bracketing the desired pH. If monovalent cations interfere, or are being investigated, then titration with tetramethylammonium hydroxide can be done to avoid mineral cations. Similarly, the substitution of the most commonly used counteranion, chloride, with other anions such as acetate, sulfate, or glutamate, may have significant effects on enzyme activity or protein–DNA interactions (Leirmo et al., 1987). Stock solutions should be made with quality water (deionized and double-distilled, preferably) and filtered through a sterile ultrafiltration system (0.22 um) to prevent bacterial or fungal growth, especially with solutions in the pH 6–8 range. To prevent heavy metals from interfering, EDTA (10–100 mM) may be added to chelate any contaminating metals.

    缓冲液配制
    选定缓冲液后,要溶解、调节到目标pH。在对缓冲液进行调节之前,pH计必须先做校正。要用商品化的pH标准品进行校正,标准品的pH范围要包括目标pH。如果单价阳离子有干扰,或被研究,pH调节可以用四甲基氢氧化铵以避免引入矿物阳离子。同理,最常用的相反的阴离子,氯离子,其替代物如乙酸盐、硫酸盐或谷氨酸盐可能对酶活性或蛋白质-DNA相互作用有严重的影响。缓冲储存液要用有质量的水来配制,最好是去离子水和双蒸水,还要经过一个灭菌的超滤系统(0.22 um)进行过滤,以防止细菌或真菌繁殖,特别是在pH6-8之间的缓冲液。为了防止重金属干扰,可以加入EDTA(10-100mM)来鳌合污染的金属离子。

    几点感想:
    1、pH计的校正。那种红、绿、蓝三色的标准pH缓冲液最好用,不要去买那种固体的国产试剂用容量瓶配制,不值得。pH计的日常维护也很重要。pH电极平时应处于正确的保存缓冲液中,不能干啊。

    2、四甲基氢氧化铵从来没有用过,放狗。

    3、水。蛋白质纯化操作去离子水是最低要求。

    4、“灭菌的超滤系统(0.22 um)进行过滤”这句话属于表述错误,应该是指过滤系统,不是超滤系统。超滤截留0.22um还能叫超滤吗?一个大漏勺了。

    5、“加入EDTA防止重金属干扰”说得不错,但要考虑具体应用情况。比如说前面刚刚说过的对金属离子依赖的酶活性。另外,文中10-100mM的使用浓度是不是太高了?一般使用5mM以下吧。


    56773123.jpg

  • dog002 (2013-11-14 22:33:05)

    5. Volatile Buffers
    In certain cases, it is necessary to remove a buffer quickly and completely. Volatile buffers make it possible to remove components that may interfere in subsequent procedures. Volatile buffers are useful in electrophoresis, ion-exchange chromatography, and digestion of proteins followed by separation of peptides or amino acids. Most of the volatile buffers (Table 6.2) are transparent in the lower UV range except for the buffers containing pyridine (Perrin and Dempsey, 1974). An important consideration is interference in amino acid analysis (i.e., reactions with ninhydrin). Most volatile buffers will not interfere with ninhydrin if the concentrations are not too high (e.g., triethanolamine less than 0.1 M does not interfere).

    图片:挥发性缓冲液
    (略)

    挥发性缓冲液在纯化方面的应用可能主要是冻干考虑。但是我自己从来没有做过相应的试验。总是对这个挥发性存有疑问。有挥发性没有问题,可以理解。但是处于缓冲溶液中的物质能挥发的那么干净吗?最简单的氨水,氨味要挥发干净不知需要多少天?


    28253430.jpg

  • dog002 (2013-11-14 22:34:10)

    6. Broad-Range Buffers
    There may be occasions where a single buffer system is desired that can span a wide pH range of perhaps 5 or more pH units. One method would be a mixture of buffers that sufficiently covers the pH range of interest. This may lead to nonspecific buffer interactions for which corrections must be made. Another common approach is to use a series of structurally related buffers that have evenly spaced pK values such that each pK is separated by approximately _1 pH unit (the limit of buffering capacity). The Good buffers are ideal for this approach since they are structurally related and have relatively evenly spaced pK values. As the pH passes the pK of one buffer it becomes nonparticipatory and therefore has no further function. These nonparticipating buffer components may show nonspecific buffer effects as well as raising the ionic strength with potential deleterious effects. A detailed description of buffer mixtures which provide a wide range of buffering capacity with constant ionic strength is available (Ellis and Morrison, this series).

    有时候要求一种缓冲体系可以跨越5个或更大的pH单位范围。方法之一是应用能够覆盖要求pH范围的混合缓冲液。这也可能导致非特异性的缓冲液相互作用,必须做校正。另一个常用方法是使用一系列结构上相关的缓冲液,它们具有均匀的pK间隔,例如每个pK大约相差1个pH单位。当pH跨越一种缓冲液的pK时,这种缓冲液就不在参与缓冲作用,也就没有了进一步的功能。这些不参与性的缓冲液组分也不会表现出非特异性的缓冲液作用,诸如升高离子强度之类的潜在负面影响。具有恒定离子强度、宽广缓冲容量的混合缓冲液已有文献进行过详细描述(本书系列中Ellis and Morrison的大作)。

    7. Recipes for Buffer Stock Solutions
    缓冲液储存液配方
    (略)

    配方很多书的附录中都有,例如生物化学实验,分子克隆等等。但我还是有几点要说的:

    1、各种书中的配方往往有些小的差异,要通过自己的实际配制后来进行选取。这到不是说那种书是对的,那种是错误的。这可能是每种书这个配方表的最初来源不同,当初做这个表的人所使用的试剂或水等等与其他的人有差别。

    2、不管使用那种配方表,溶液在配制好以后都要进行pH计的检测校正。因为在我们的试验室中,水或试剂的批号的不同可能会有差别。

    3、在我的印象中,PB磷酸盐、CB碳酸盐缓冲液按配方配制后其pH往往很准确,Tris缓冲液是用HCl调节配制的,没什么问题,而柠檬酸盐和甘氨酸缓冲液往往pH差距较大。
  • dog002 (2013-11-14 22:34:42)


    相关疾病:
    普通感冒
    查看原图

    图片:酶活性检测
    (略)

    本书我主要是对蛋白质纯化感兴趣,对酶的检测方法不感冒,所以本章略过。


    24495207.jpg

  • dog002 (2013-11-14 22:35:11)

    1. Introduction
    (略)


    85461422.jpg

  • dog002 (2013-11-14 22:35:45)

    有价值的一个图表。

    2. General Instructions for Reagent Preparation
    For the methods detailed, reagents should be used at the highest purity available and dyes should be obtained at spectroscopy grade where available. Ideally deionized, filtered water should be used at a minimum quality of 18 MΩ cm and a total organic carbon of below 6 ppb. All buffer preparations should be filtered using 0.2 μm filtration (Millipore, Sartorius) devices upon preparation to remove bacteria and fines. If precipitation occurs during storage, the reagent should be discarded, unless stated in the method.
    (略)

    要求好高!最高纯度的试剂、光谱级的染料、18 MΩ cm的无菌过滤纯水,做药厂的QC可能应该满足这些条件,我等试验室的纯化恐怕没这个条件,也觉得没有这么恐怖。
    顺便说一下,18 MΩ cm是电阻率的单位,表征离子强度吧。


    70337046.jpg

  • dog002 (2013-11-14 22:36:14)

    3. Ultraviolet Absorption Spectroscopy
    3.1. Ultraviolet absorbance at 280 nm (Range: 20–3000 ug)
    紫外吸收光谱法
    紫外吸收280nm(范围:20-3000ug)

    这个范围很不地道。定量定的是浓度,又不是质量。用质量单位来表述毫无参考意义!
  • dog002 (2013-11-14 22:36:55)

    Proteins display a characteristic ultraviolet (UV) absorption spectrum around 280 nm predominately from the aromatic amino acids tyrosine and tryptophan. If the primary sequence contains no or few of these amino acids,then this method will give erroneous results. Quartz crystal cuvettes are routinely used for measurement as plastic materials can leach plasticizers, and are not UV transparent. Similarly, buffer components with strong UV absorbance such as some detergents especially Triton X-100 should be avoided (Table 8.1) and ‘‘blank’’ samples should be measured using the sample buffer solution but with no protein present. UV absorbance is routinely used to give an estimate of protein concentration but if the molar extinction coefficient of the protein is known then the Beer–Lambert law can be used to accurately quantitate amount of protein by UV absorbance, assuming the protein is pure and contains no UV absorbing nonprotein components such as bound nucleotide cofactors, heme, or iron–sulfur centers.

    在280nm附近蛋白质所表现出来的紫外吸收特性主要是由芳香性氨基酸,色氨酸和酪氨酸,所贡献。如果一级序列中没有或含很少此类氨基酸,本方法将得到错误的结果。通常用石英杯来进行测定,而塑料制品会释放塑化剂之类的物质,有紫外吸收不可用。同理,缓冲液组分中含有强紫外吸收物质的,如一些表面活性剂,特别是Triton X-100,应该避免使用。空白校正样应该用不含待测蛋白的样品缓冲液制备。紫外吸收值通常用来估计蛋白浓度,但是如果满足下列几个条件,就可以用Beer–Lambert定律准确定量蛋白浓度:样品蛋白的摩尔消光系数已知;纯蛋白;不含结合核苷酸辅基、亚铁血红素或铁-硫中心等有紫外吸收的非蛋白组分。

    在此先更正自己的一个错误认识。在(一)中我以为280nm吸收的氨基酸还包括苯丙氨酸(Phe),在本节中看到还没有Phe,不禁去仔细地查看了一下《生物化学》教材。应该说本节的描述没有错。准确地说,近紫外区(220-300nm)吸收的氨基酸有色氨酸、酪氨酸和苯丙氨酸,但苯丙氨酸的最大吸收波长为257nm,而且其摩尔消光系数较小,对280nm紫外吸收的贡献小,可以忽略。

    1、苯丙氨酸最大吸收波长257nm,此处的摩尔消光系数为200;
    2、酪氨酸最大吸收波长275nm,此处的摩尔消光系数为1400;
    3、色氨酸最大吸收波长280nm,此处的摩尔消光系数为5600;

    用狗搜了一张图片如下:

    此段还有两个有用的信息:

    1、塑料制品会释放塑化剂之类的物质,有紫外吸收不可用。这个从来没有想到过。平常都是用EP管稀释样品的,不知道影响有多大?
    2、表面活性剂Triton X-100是强紫外吸收物质。


    81485797.jpg

  • dog002 (2013-11-14 22:37:55)

    Beer–Lambert (molar absorption coefficient):

    where am is the molar extinction coefficient, c the concentration of analyte, and l the path length in cm.
    (略)

    在这里可以看到光吸收值与浓度和光径有关,成线性关系。


    18607583.jpg

  • dog002 (2013-11-14 22:38:17)

    3.2. Method
    For the measurement of a protein with unknown extinction coefficient, using a protein standard:
    1. Add blank buffer to a clean quartz cuvette and use to zero the spectrophotometer.
    2. Either using a fresh identical cuvette or replace the buffer with the sample, then measure the absorbance at 280 nm. If the signal is outside the linear range of the instrument (typically an absorbance greater than 2.0), then dilute the protein in buffer and remeasure.
    3. After measurement of the sample remeasure the blank buffer to correct for any instrument drift.
    4. Determine the unknown concentrations from the linear standard response.

    方法
    测定未知消光系数的样品蛋白,要用标准蛋白做对比:
    1、加空白用缓冲液到干净的石英比色皿,仪器调零。
    2、使用干净的同种比色皿装样品蛋白液,或不换比色皿,用样品蛋白液替代调零用空白缓冲液,测定280nm吸收。若读值超出仪器的线性范围(通常吸收值大于2.0),用缓冲液稀释样品蛋白,重新测定。
    3、样品测定后,再检测一次空白缓冲液,以校正仪器的漂移。
    4、由线性标准曲线得到未知的样品浓度。

    1、对文章中的线性范围有看法。文中给出的值为2.0,这个值太大了些。一般对于光度分析法来说,超过1.0的值就很难保持良好的线性了。
    另外,文中没有提到下限,这也是不严谨的。
    我们在实际工作中一般控制吸光度的值在0.2-0.8之间,最好是0.4-0.7之间,即:
    A280=0.4-0.7
    相应的蛋白浓度粗略的估计为C=0.3-0.5mg/ml。
    不在此范围的吸光度,就进行稀释调整。

    2、比色皿个人以为还是用同一个的好。因为比色皿使用时间稍长,可能就有一些看不见的细微划痕,对读数有影响。

    3、仪器的漂移常见。但如果仪器经过了充分的开机预热,一般在15min以上吧,漂移问题不大。

    4、样品的吸光度值要在标准曲线的上下限范围内。
  • dog002 (2013-11-14 22:38:41)

    3.3. Comments
    The determination of the absorbance coefficient for a protein is discussed below but if a stock of the protein at known concentration is available then this can be used as a standard. Very rough estimates can be made from the relationship that if the cuvette has a path length of 1 cm, and the sample volume is 1 ml then concentration (mg/ml)=absorbance of protein at 280 nm.
    (略)

    此小段有两处值得商榷的地方。

    if the cuvette has a path length of 1 cm, and the sample volume is 1 ml then concentration (mg/ml)=absorbance of protein at 280 nm

    1、值应该与比色皿的光径有关,但与样品体积无关,可见Beer–Lambert公式。

    2、浓度估算,1mg/ml=1A280,确实可能造成很大误差。对大肠杆菌破菌上清这么估算的话,浓度可不是一般的高。要说明一下要求,例如溶液体系除蛋白外,其它杂质含量较少等。
  • dog002 (2013-11-14 22:39:02)

    Light scattering from either turbid protein samples or particles suspended in the sample with a comparable size to the incident wavelength (250– 300 nm) can reduce the amount of light reaching the detector leading to an increase in apparent absorbance. Filtration using 0.2 um filter units (that do not adsorb proteins), or centrifugation can be performed prior to analysis to reduce light scattering. Corrections for light scattering can be performed by measuring absorbance at lower energies (320, 325, 330, 335, 340, 345, and 350 nm), assuming the protein does not display significant absorbance at these wavelengths. A log–log plot of absorbance versus wavelength should generate a linear response that can be extrapolated back to 280 nm, the resulting antilog of which will give the scattering contribution at this wavelength (Leach and Scheraga, 1960).
    (略)

    浑浊样品在测定前要离心或过滤,自然。
    用320-350nm处的吸收来消除280nm的散射吸收?有局限性。万一样品中有某些物质在此波长范围内有特异性的吸收呢?